Loading…

Genome-wide binding analysis of 195 DNA binding proteins reveals “reservoir” promoters and human specific SVA-repeat family regulation

A key aspect in defining cell state is the complex choreography of DNA binding events in a given cell type, which in turn establishes a cell-specific gene-expression program. Here we wanted to take a deep analysis of DNA binding events and transcriptional output of a single cell state (K562 cells)....

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-06, Vol.16 (6), p.e0237055-e0237055
Main Authors: Smallegan, Michael J, Shehata, Soraya, Spradlin, Savannah F, Swearingen, Alison, Wheeler, Graycen, Das, Arpan, Corbet, Giulia, Nebenfuehr, Benjamin, Ahrens, Daniel, Tauber, Devin, Lennon, Shelby, Choi, Kevin, Huynh, Thao, Wieser, Tom, Schneider, Kristen, Bradshaw, Michael, Basken, Joel, Lai, Maria, Read, Timothy, Hynes-Grace, Matt, Timmons, Dan, Demasi, Jon, Rinn, John L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c669t-7a884d300ef4972aa5d4043e2028a53db0666eba74018cf172487b042554d2c43
cites cdi_FETCH-LOGICAL-c669t-7a884d300ef4972aa5d4043e2028a53db0666eba74018cf172487b042554d2c43
container_end_page e0237055
container_issue 6
container_start_page e0237055
container_title PloS one
container_volume 16
creator Smallegan, Michael J
Shehata, Soraya
Spradlin, Savannah F
Swearingen, Alison
Wheeler, Graycen
Das, Arpan
Corbet, Giulia
Nebenfuehr, Benjamin
Ahrens, Daniel
Tauber, Devin
Lennon, Shelby
Choi, Kevin
Huynh, Thao
Wieser, Tom
Schneider, Kristen
Bradshaw, Michael
Basken, Joel
Lai, Maria
Read, Timothy
Hynes-Grace, Matt
Timmons, Dan
Demasi, Jon
Rinn, John L
description A key aspect in defining cell state is the complex choreography of DNA binding events in a given cell type, which in turn establishes a cell-specific gene-expression program. Here we wanted to take a deep analysis of DNA binding events and transcriptional output of a single cell state (K562 cells). To this end we re-analyzed 195 DNA binding proteins contained in ENCODE data. We used standardized analysis pipelines, containerization, and literate programming with R Markdown for reproducibility and rigor. Our approach validated many findings from previous independent studies, underscoring the importance of ENCODE’s goals in providing these reproducible data resources. We also had several new findings including: (i) 1,362 promoters, which we refer to as ‘reservoirs,’ that are defined by having up to 111 different DNA binding-proteins localized on one promoter, yet do not have any expression of steady-state RNA (ii) Reservoirs do not overlap super-enhancer annotations and distinct have distinct properties from super-enhancers. (iii) The human specific SVA repeat element may have been co-opted for enhancer regulation and is highly transcribed in PRO-seq and RNA-seq. Collectively, this study performed by the students of a CU Boulder computational biology class (BCHM 5631 –Spring 2020) demonstrates the value of reproducible findings and how resources like ENCODE that prioritize data standards can foster new findings with existing data in a didactic environment.
doi_str_mv 10.1371/journal.pone.0237055
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2544867079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666328520</galeid><doaj_id>oai_doaj_org_article_3581be7dbf384cbd93c22a41d69897a4</doaj_id><sourcerecordid>A666328520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-7a884d300ef4972aa5d4043e2028a53db0666eba74018cf172487b042554d2c43</originalsourceid><addsrcrecordid>eNqNk8Fu1DAQQCMEomXhD5CIhITgsItjO45zQVoVKCtVVKLQq-XYk11XSZzaycLeeuYb4Of6JTjdUDWoB-RDLPv5TWY0E0XPE7RISJa8vbC9a2S1aG0DC4RJhtL0QXSY5ATPGUbk4Z39QfTE-wuEUsIZexwdEJowRhg_jH4eQ2NrmH83GuLCNNo061gG784bH9syTvI0fv95eXvXOtuBaXzsYAuy8vH11S8HHtzWGnd99XsA6oA4HzQ63vS1bGLfgjKlUfHZ-XLuoAXZxaWsTbULmnVfyc7Y5mn0qAxCeDZ-Z9G3jx--Hn2an5wer46WJ3PFWN7NM8k51QQhKGmeYSlTTRElgBHmMiW6QIwxKGRGUcJVmWSY8qxAFKcp1VhRMote7L1tZb0Yy-gFTinlLENZHojVntBWXojWmVq6nbDSiJsD69ZCus6oCgRJeVJApouScKoKnROFsaSJZjnPMzlEezdG64satIKmc7KaSKc3jdmItd0KjnHIbxC8HgXOXvbgO1Ebr6CqZAO2v_nvlCFKGQ_oy3_Q-7MbqbUMCZimtCGuGqRiGUpHME9Dy8yixT1UWBpqo0LPlSacTx68mTwITAc_urXsvRersy__z56eT9lXd9hN6Llu423VDy3jpyDdg8pZ7x2Ut0VOkBhG5m81xDAyYhwZ8gcbswkq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544867079</pqid></control><display><type>article</type><title>Genome-wide binding analysis of 195 DNA binding proteins reveals “reservoir” promoters and human specific SVA-repeat family regulation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Smallegan, Michael J ; Shehata, Soraya ; Spradlin, Savannah F ; Swearingen, Alison ; Wheeler, Graycen ; Das, Arpan ; Corbet, Giulia ; Nebenfuehr, Benjamin ; Ahrens, Daniel ; Tauber, Devin ; Lennon, Shelby ; Choi, Kevin ; Huynh, Thao ; Wieser, Tom ; Schneider, Kristen ; Bradshaw, Michael ; Basken, Joel ; Lai, Maria ; Read, Timothy ; Hynes-Grace, Matt ; Timmons, Dan ; Demasi, Jon ; Rinn, John L</creator><contributor>Mantovani, Roberto</contributor><creatorcontrib>Smallegan, Michael J ; Shehata, Soraya ; Spradlin, Savannah F ; Swearingen, Alison ; Wheeler, Graycen ; Das, Arpan ; Corbet, Giulia ; Nebenfuehr, Benjamin ; Ahrens, Daniel ; Tauber, Devin ; Lennon, Shelby ; Choi, Kevin ; Huynh, Thao ; Wieser, Tom ; Schneider, Kristen ; Bradshaw, Michael ; Basken, Joel ; Lai, Maria ; Read, Timothy ; Hynes-Grace, Matt ; Timmons, Dan ; Demasi, Jon ; Rinn, John L ; Mantovani, Roberto</creatorcontrib><description>A key aspect in defining cell state is the complex choreography of DNA binding events in a given cell type, which in turn establishes a cell-specific gene-expression program. Here we wanted to take a deep analysis of DNA binding events and transcriptional output of a single cell state (K562 cells). To this end we re-analyzed 195 DNA binding proteins contained in ENCODE data. We used standardized analysis pipelines, containerization, and literate programming with R Markdown for reproducibility and rigor. Our approach validated many findings from previous independent studies, underscoring the importance of ENCODE’s goals in providing these reproducible data resources. We also had several new findings including: (i) 1,362 promoters, which we refer to as ‘reservoirs,’ that are defined by having up to 111 different DNA binding-proteins localized on one promoter, yet do not have any expression of steady-state RNA (ii) Reservoirs do not overlap super-enhancer annotations and distinct have distinct properties from super-enhancers. (iii) The human specific SVA repeat element may have been co-opted for enhancer regulation and is highly transcribed in PRO-seq and RNA-seq. Collectively, this study performed by the students of a CU Boulder computational biology class (BCHM 5631 –Spring 2020) demonstrates the value of reproducible findings and how resources like ENCODE that prioritize data standards can foster new findings with existing data in a didactic environment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0237055</identifier><identifier>PMID: 34166368</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Annotations ; Binding ; Biochemistry ; Biology and life sciences ; Cellular biology ; Computer applications ; Computer science ; Consortia ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA binding proteins ; Enhancers ; Evaluation ; Gene expression ; Genetic transcription ; Genomes ; Physical Sciences ; Promoters ; Proteins ; Reproducibility ; Research and Analysis Methods ; Reservoirs ; Ribonucleic acid ; RNA ; Transcription</subject><ispartof>PloS one, 2021-06, Vol.16 (6), p.e0237055-e0237055</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Smallegan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Smallegan et al 2021 Smallegan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-7a884d300ef4972aa5d4043e2028a53db0666eba74018cf172487b042554d2c43</citedby><cites>FETCH-LOGICAL-c669t-7a884d300ef4972aa5d4043e2028a53db0666eba74018cf172487b042554d2c43</cites><orcidid>0000-0001-7072-5603 ; 0000-0002-1561-6815 ; 0000-0002-4049-8865 ; 0000-0003-3205-177X ; 0000-0002-5919-6736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544867079/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544867079?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>Mantovani, Roberto</contributor><creatorcontrib>Smallegan, Michael J</creatorcontrib><creatorcontrib>Shehata, Soraya</creatorcontrib><creatorcontrib>Spradlin, Savannah F</creatorcontrib><creatorcontrib>Swearingen, Alison</creatorcontrib><creatorcontrib>Wheeler, Graycen</creatorcontrib><creatorcontrib>Das, Arpan</creatorcontrib><creatorcontrib>Corbet, Giulia</creatorcontrib><creatorcontrib>Nebenfuehr, Benjamin</creatorcontrib><creatorcontrib>Ahrens, Daniel</creatorcontrib><creatorcontrib>Tauber, Devin</creatorcontrib><creatorcontrib>Lennon, Shelby</creatorcontrib><creatorcontrib>Choi, Kevin</creatorcontrib><creatorcontrib>Huynh, Thao</creatorcontrib><creatorcontrib>Wieser, Tom</creatorcontrib><creatorcontrib>Schneider, Kristen</creatorcontrib><creatorcontrib>Bradshaw, Michael</creatorcontrib><creatorcontrib>Basken, Joel</creatorcontrib><creatorcontrib>Lai, Maria</creatorcontrib><creatorcontrib>Read, Timothy</creatorcontrib><creatorcontrib>Hynes-Grace, Matt</creatorcontrib><creatorcontrib>Timmons, Dan</creatorcontrib><creatorcontrib>Demasi, Jon</creatorcontrib><creatorcontrib>Rinn, John L</creatorcontrib><title>Genome-wide binding analysis of 195 DNA binding proteins reveals “reservoir” promoters and human specific SVA-repeat family regulation</title><title>PloS one</title><description>A key aspect in defining cell state is the complex choreography of DNA binding events in a given cell type, which in turn establishes a cell-specific gene-expression program. Here we wanted to take a deep analysis of DNA binding events and transcriptional output of a single cell state (K562 cells). To this end we re-analyzed 195 DNA binding proteins contained in ENCODE data. We used standardized analysis pipelines, containerization, and literate programming with R Markdown for reproducibility and rigor. Our approach validated many findings from previous independent studies, underscoring the importance of ENCODE’s goals in providing these reproducible data resources. We also had several new findings including: (i) 1,362 promoters, which we refer to as ‘reservoirs,’ that are defined by having up to 111 different DNA binding-proteins localized on one promoter, yet do not have any expression of steady-state RNA (ii) Reservoirs do not overlap super-enhancer annotations and distinct have distinct properties from super-enhancers. (iii) The human specific SVA repeat element may have been co-opted for enhancer regulation and is highly transcribed in PRO-seq and RNA-seq. Collectively, this study performed by the students of a CU Boulder computational biology class (BCHM 5631 –Spring 2020) demonstrates the value of reproducible findings and how resources like ENCODE that prioritize data standards can foster new findings with existing data in a didactic environment.</description><subject>Analysis</subject><subject>Annotations</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Biology and life sciences</subject><subject>Cellular biology</subject><subject>Computer applications</subject><subject>Computer science</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>Enhancers</subject><subject>Evaluation</subject><subject>Gene expression</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Physical Sciences</subject><subject>Promoters</subject><subject>Proteins</subject><subject>Reproducibility</subject><subject>Research and Analysis Methods</subject><subject>Reservoirs</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transcription</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8Fu1DAQQCMEomXhD5CIhITgsItjO45zQVoVKCtVVKLQq-XYk11XSZzaycLeeuYb4Of6JTjdUDWoB-RDLPv5TWY0E0XPE7RISJa8vbC9a2S1aG0DC4RJhtL0QXSY5ATPGUbk4Z39QfTE-wuEUsIZexwdEJowRhg_jH4eQ2NrmH83GuLCNNo061gG784bH9syTvI0fv95eXvXOtuBaXzsYAuy8vH11S8HHtzWGnd99XsA6oA4HzQ63vS1bGLfgjKlUfHZ-XLuoAXZxaWsTbULmnVfyc7Y5mn0qAxCeDZ-Z9G3jx--Hn2an5wer46WJ3PFWN7NM8k51QQhKGmeYSlTTRElgBHmMiW6QIwxKGRGUcJVmWSY8qxAFKcp1VhRMote7L1tZb0Yy-gFTinlLENZHojVntBWXojWmVq6nbDSiJsD69ZCus6oCgRJeVJApouScKoKnROFsaSJZjnPMzlEezdG64satIKmc7KaSKc3jdmItd0KjnHIbxC8HgXOXvbgO1Ebr6CqZAO2v_nvlCFKGQ_oy3_Q-7MbqbUMCZimtCGuGqRiGUpHME9Dy8yixT1UWBpqo0LPlSacTx68mTwITAc_urXsvRersy__z56eT9lXd9hN6Llu423VDy3jpyDdg8pZ7x2Ut0VOkBhG5m81xDAyYhwZ8gcbswkq</recordid><startdate>20210624</startdate><enddate>20210624</enddate><creator>Smallegan, Michael J</creator><creator>Shehata, Soraya</creator><creator>Spradlin, Savannah F</creator><creator>Swearingen, Alison</creator><creator>Wheeler, Graycen</creator><creator>Das, Arpan</creator><creator>Corbet, Giulia</creator><creator>Nebenfuehr, Benjamin</creator><creator>Ahrens, Daniel</creator><creator>Tauber, Devin</creator><creator>Lennon, Shelby</creator><creator>Choi, Kevin</creator><creator>Huynh, Thao</creator><creator>Wieser, Tom</creator><creator>Schneider, Kristen</creator><creator>Bradshaw, Michael</creator><creator>Basken, Joel</creator><creator>Lai, Maria</creator><creator>Read, Timothy</creator><creator>Hynes-Grace, Matt</creator><creator>Timmons, Dan</creator><creator>Demasi, Jon</creator><creator>Rinn, John L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7072-5603</orcidid><orcidid>https://orcid.org/0000-0002-1561-6815</orcidid><orcidid>https://orcid.org/0000-0002-4049-8865</orcidid><orcidid>https://orcid.org/0000-0003-3205-177X</orcidid><orcidid>https://orcid.org/0000-0002-5919-6736</orcidid></search><sort><creationdate>20210624</creationdate><title>Genome-wide binding analysis of 195 DNA binding proteins reveals “reservoir” promoters and human specific SVA-repeat family regulation</title><author>Smallegan, Michael J ; Shehata, Soraya ; Spradlin, Savannah F ; Swearingen, Alison ; Wheeler, Graycen ; Das, Arpan ; Corbet, Giulia ; Nebenfuehr, Benjamin ; Ahrens, Daniel ; Tauber, Devin ; Lennon, Shelby ; Choi, Kevin ; Huynh, Thao ; Wieser, Tom ; Schneider, Kristen ; Bradshaw, Michael ; Basken, Joel ; Lai, Maria ; Read, Timothy ; Hynes-Grace, Matt ; Timmons, Dan ; Demasi, Jon ; Rinn, John L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-7a884d300ef4972aa5d4043e2028a53db0666eba74018cf172487b042554d2c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Annotations</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Biology and life sciences</topic><topic>Cellular biology</topic><topic>Computer applications</topic><topic>Computer science</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>Enhancers</topic><topic>Evaluation</topic><topic>Gene expression</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Physical Sciences</topic><topic>Promoters</topic><topic>Proteins</topic><topic>Reproducibility</topic><topic>Research and Analysis Methods</topic><topic>Reservoirs</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smallegan, Michael J</creatorcontrib><creatorcontrib>Shehata, Soraya</creatorcontrib><creatorcontrib>Spradlin, Savannah F</creatorcontrib><creatorcontrib>Swearingen, Alison</creatorcontrib><creatorcontrib>Wheeler, Graycen</creatorcontrib><creatorcontrib>Das, Arpan</creatorcontrib><creatorcontrib>Corbet, Giulia</creatorcontrib><creatorcontrib>Nebenfuehr, Benjamin</creatorcontrib><creatorcontrib>Ahrens, Daniel</creatorcontrib><creatorcontrib>Tauber, Devin</creatorcontrib><creatorcontrib>Lennon, Shelby</creatorcontrib><creatorcontrib>Choi, Kevin</creatorcontrib><creatorcontrib>Huynh, Thao</creatorcontrib><creatorcontrib>Wieser, Tom</creatorcontrib><creatorcontrib>Schneider, Kristen</creatorcontrib><creatorcontrib>Bradshaw, Michael</creatorcontrib><creatorcontrib>Basken, Joel</creatorcontrib><creatorcontrib>Lai, Maria</creatorcontrib><creatorcontrib>Read, Timothy</creatorcontrib><creatorcontrib>Hynes-Grace, Matt</creatorcontrib><creatorcontrib>Timmons, Dan</creatorcontrib><creatorcontrib>Demasi, Jon</creatorcontrib><creatorcontrib>Rinn, John L</creatorcontrib><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Agricultural &amp; Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smallegan, Michael J</au><au>Shehata, Soraya</au><au>Spradlin, Savannah F</au><au>Swearingen, Alison</au><au>Wheeler, Graycen</au><au>Das, Arpan</au><au>Corbet, Giulia</au><au>Nebenfuehr, Benjamin</au><au>Ahrens, Daniel</au><au>Tauber, Devin</au><au>Lennon, Shelby</au><au>Choi, Kevin</au><au>Huynh, Thao</au><au>Wieser, Tom</au><au>Schneider, Kristen</au><au>Bradshaw, Michael</au><au>Basken, Joel</au><au>Lai, Maria</au><au>Read, Timothy</au><au>Hynes-Grace, Matt</au><au>Timmons, Dan</au><au>Demasi, Jon</au><au>Rinn, John L</au><au>Mantovani, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide binding analysis of 195 DNA binding proteins reveals “reservoir” promoters and human specific SVA-repeat family regulation</atitle><jtitle>PloS one</jtitle><date>2021-06-24</date><risdate>2021</risdate><volume>16</volume><issue>6</issue><spage>e0237055</spage><epage>e0237055</epage><pages>e0237055-e0237055</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A key aspect in defining cell state is the complex choreography of DNA binding events in a given cell type, which in turn establishes a cell-specific gene-expression program. Here we wanted to take a deep analysis of DNA binding events and transcriptional output of a single cell state (K562 cells). To this end we re-analyzed 195 DNA binding proteins contained in ENCODE data. We used standardized analysis pipelines, containerization, and literate programming with R Markdown for reproducibility and rigor. Our approach validated many findings from previous independent studies, underscoring the importance of ENCODE’s goals in providing these reproducible data resources. We also had several new findings including: (i) 1,362 promoters, which we refer to as ‘reservoirs,’ that are defined by having up to 111 different DNA binding-proteins localized on one promoter, yet do not have any expression of steady-state RNA (ii) Reservoirs do not overlap super-enhancer annotations and distinct have distinct properties from super-enhancers. (iii) The human specific SVA repeat element may have been co-opted for enhancer regulation and is highly transcribed in PRO-seq and RNA-seq. Collectively, this study performed by the students of a CU Boulder computational biology class (BCHM 5631 –Spring 2020) demonstrates the value of reproducible findings and how resources like ENCODE that prioritize data standards can foster new findings with existing data in a didactic environment.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34166368</pmid><doi>10.1371/journal.pone.0237055</doi><tpages>e0237055</tpages><orcidid>https://orcid.org/0000-0001-7072-5603</orcidid><orcidid>https://orcid.org/0000-0002-1561-6815</orcidid><orcidid>https://orcid.org/0000-0002-4049-8865</orcidid><orcidid>https://orcid.org/0000-0003-3205-177X</orcidid><orcidid>https://orcid.org/0000-0002-5919-6736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-06, Vol.16 (6), p.e0237055-e0237055
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2544867079
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free
subjects Analysis
Annotations
Binding
Biochemistry
Biology and life sciences
Cellular biology
Computer applications
Computer science
Consortia
Datasets
Deoxyribonucleic acid
DNA
DNA binding proteins
Enhancers
Evaluation
Gene expression
Genetic transcription
Genomes
Physical Sciences
Promoters
Proteins
Reproducibility
Research and Analysis Methods
Reservoirs
Ribonucleic acid
RNA
Transcription
title Genome-wide binding analysis of 195 DNA binding proteins reveals “reservoir” promoters and human specific SVA-repeat family regulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20binding%20analysis%20of%20195%20DNA%20binding%20proteins%20reveals%20%E2%80%9Creservoir%E2%80%9D%20promoters%20and%20human%20specific%20SVA-repeat%20family%20regulation&rft.jtitle=PloS%20one&rft.au=Smallegan,%20Michael%20J&rft.date=2021-06-24&rft.volume=16&rft.issue=6&rft.spage=e0237055&rft.epage=e0237055&rft.pages=e0237055-e0237055&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0237055&rft_dat=%3Cgale_plos_%3EA666328520%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c669t-7a884d300ef4972aa5d4043e2028a53db0666eba74018cf172487b042554d2c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544867079&rft_id=info:pmid/34166368&rft_galeid=A666328520&rfr_iscdi=true