Loading…
Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network
Environmental quality is a major factor that directly impacts waterfowl productivity. Accurate prediction of pollution index (PI) is the key to improving environmental management and pollution control. This study applied a new neural network model called temporal convolutional network and a denoisin...
Saved in:
Published in: | PloS one 2021-07, Vol.16 (7), p.e0254179 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c669t-2970696ed81522760e54c7607f50955f05b925d06dee6eafbf4c22ede00104d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c669t-2970696ed81522760e54c7607f50955f05b925d06dee6eafbf4c22ede00104d63 |
container_end_page | |
container_issue | 7 |
container_start_page | e0254179 |
container_title | PloS one |
container_volume | 16 |
creator | Huang, Jiande Liu, Shuangyin Hassan, Shahbaz Gul Xu, Longqin |
description | Environmental quality is a major factor that directly impacts waterfowl productivity. Accurate prediction of pollution index (PI) is the key to improving environmental management and pollution control. This study applied a new neural network model called temporal convolutional network and a denoising algorithm called wavelet transform (WT) for predicting future 12-, 24-, and 48-hour PI values at a waterfowl farm in Shanwei, China. The temporal convoluted network (TCN) model performance was compared with that of recurrent architectures with the same capacity, long-short time memory neural network (LSTM), and gated recurrent unit (GRU). Denoised environmental data, including ammonia, temperature, relative humidity, carbon dioxide (CO.sub.2 ), and total suspended particles (TSP), were used to construct the forecasting model. The simulation results showed that the TCN model in general produced a more precise PI prediction and provided the highest prediction accuracy for all phases (MAE = 0.0842, 0.0859, and 0.1115; RMSE = 0.0154, 0.0167, and 0.0273; R2 = 0.9789, 0.9791, and 0.9635). The PI assessment prediction model based on TCN exhibited the best prediction accuracy and general performance compared with other parallel forecasting models and is a suitable and useful tool for predicting PI in waterfowl farms. |
doi_str_mv | 10.1371/journal.pone.0254179 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2554597331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A669420196</galeid><doaj_id>oai_doaj_org_article_76c47b9e52a4437688ead59b54273621</doaj_id><sourcerecordid>A669420196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-2970696ed81522760e54c7607f50955f05b925d06dee6eafbf4c22ede00104d63</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3HX1HwgOCIIXrflOcyMsix-FhRW_bmMmOdOmzkxqkm7Xf2-6HWUHFCQXCSfPeXPOm1NVTzGaYyrxq03YxcF0820YYI4IZ1iqe9UpVpTMBEH0_p3zSfUopQ1CnC6EeFidUEaUlFSeVt8-hK7bZR-G2g8OburQ1nuTIbZh39WtiX1tUoKUehhybQZXbyM4b28zGpPA1eWQod-GaLrahuE6FL0SHiDvQ_z-uHrQmi7Bk3E_q768ffP54v3s8urd8uL8cmaFUHlW6kFCCXALzAmRAgFntmyy5Uhx3iLeKMIdEg5AgGmblllCwAFCGDEn6Fn17Ki77ULSozlJE84ZV5JSXIjlkXDBbPQ2-t7EnzoYr28DIa60idnbDrQUlslGASeGMSrFYgHGcdVwRiQV5KD1enxt1_TgbDGntD8Rnd4Mfq1X4VovKMIC8yLwfBSI4ccOUv5HySO1MqUqP7ShiNneJ6vPi22MIKwOrc__QpXloPflR6D1JT5JeDlJKEyGm7wyu5T08tPH_2evvk7ZF3fYNZgur1M4jleaguwI2hhSitD-cQ4jfZju327ow3TrcbrpL7IV60Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554597331</pqid></control><display><type>article</type><title>Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Huang, Jiande ; Liu, Shuangyin ; Hassan, Shahbaz Gul ; Xu, Longqin</creator><contributor>Chen, Chi-Hua</contributor><creatorcontrib>Huang, Jiande ; Liu, Shuangyin ; Hassan, Shahbaz Gul ; Xu, Longqin ; Chen, Chi-Hua</creatorcontrib><description>Environmental quality is a major factor that directly impacts waterfowl productivity. Accurate prediction of pollution index (PI) is the key to improving environmental management and pollution control. This study applied a new neural network model called temporal convolutional network and a denoising algorithm called wavelet transform (WT) for predicting future 12-, 24-, and 48-hour PI values at a waterfowl farm in Shanwei, China. The temporal convoluted network (TCN) model performance was compared with that of recurrent architectures with the same capacity, long-short time memory neural network (LSTM), and gated recurrent unit (GRU). Denoised environmental data, including ammonia, temperature, relative humidity, carbon dioxide (CO.sub.2 ), and total suspended particles (TSP), were used to construct the forecasting model. The simulation results showed that the TCN model in general produced a more precise PI prediction and provided the highest prediction accuracy for all phases (MAE = 0.0842, 0.0859, and 0.1115; RMSE = 0.0154, 0.0167, and 0.0273; R2 = 0.9789, 0.9791, and 0.9635). The PI assessment prediction model based on TCN exhibited the best prediction accuracy and general performance compared with other parallel forecasting models and is a suitable and useful tool for predicting PI in waterfowl farms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0254179</identifier><identifier>PMID: 34297737</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Agricultural engineering ; Agriculture ; Algorithms ; Ammonia ; Big Data ; Biology and Life Sciences ; Carbon dioxide ; Computer and Information Sciences ; Earth Sciences ; Ecology and Environmental Sciences ; Environmental aspects ; Environmental management ; Environmental quality ; Evaluation ; Farms ; Forecasting ; Health care ; Higher education ; Humidity ; Information science ; Information technology ; Laboratories ; Mathematical models ; Neural networks ; Noise ; Noise reduction ; Particulates ; Physical Sciences ; Pollutants ; Pollution control ; Pollution index ; Poultry ; Prediction models ; Relative humidity ; Research and Analysis Methods ; Technological change ; Time series ; Ventilation ; Waterfowl ; Wavelet transforms</subject><ispartof>PloS one, 2021-07, Vol.16 (7), p.e0254179</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Huang et al 2021 Huang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-2970696ed81522760e54c7607f50955f05b925d06dee6eafbf4c22ede00104d63</citedby><cites>FETCH-LOGICAL-c669t-2970696ed81522760e54c7607f50955f05b925d06dee6eafbf4c22ede00104d63</cites><orcidid>0000-0003-3266-1885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2554597331/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2554597331?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,44589,53790,53792,74897</link.rule.ids></links><search><contributor>Chen, Chi-Hua</contributor><creatorcontrib>Huang, Jiande</creatorcontrib><creatorcontrib>Liu, Shuangyin</creatorcontrib><creatorcontrib>Hassan, Shahbaz Gul</creatorcontrib><creatorcontrib>Xu, Longqin</creatorcontrib><title>Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network</title><title>PloS one</title><description>Environmental quality is a major factor that directly impacts waterfowl productivity. Accurate prediction of pollution index (PI) is the key to improving environmental management and pollution control. This study applied a new neural network model called temporal convolutional network and a denoising algorithm called wavelet transform (WT) for predicting future 12-, 24-, and 48-hour PI values at a waterfowl farm in Shanwei, China. The temporal convoluted network (TCN) model performance was compared with that of recurrent architectures with the same capacity, long-short time memory neural network (LSTM), and gated recurrent unit (GRU). Denoised environmental data, including ammonia, temperature, relative humidity, carbon dioxide (CO.sub.2 ), and total suspended particles (TSP), were used to construct the forecasting model. The simulation results showed that the TCN model in general produced a more precise PI prediction and provided the highest prediction accuracy for all phases (MAE = 0.0842, 0.0859, and 0.1115; RMSE = 0.0154, 0.0167, and 0.0273; R2 = 0.9789, 0.9791, and 0.9635). The PI assessment prediction model based on TCN exhibited the best prediction accuracy and general performance compared with other parallel forecasting models and is a suitable and useful tool for predicting PI in waterfowl farms.</description><subject>Agricultural engineering</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Ammonia</subject><subject>Big Data</subject><subject>Biology and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Computer and Information Sciences</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Environmental aspects</subject><subject>Environmental management</subject><subject>Environmental quality</subject><subject>Evaluation</subject><subject>Farms</subject><subject>Forecasting</subject><subject>Health care</subject><subject>Higher education</subject><subject>Humidity</subject><subject>Information science</subject><subject>Information technology</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Particulates</subject><subject>Physical Sciences</subject><subject>Pollutants</subject><subject>Pollution control</subject><subject>Pollution index</subject><subject>Poultry</subject><subject>Prediction models</subject><subject>Relative humidity</subject><subject>Research and Analysis Methods</subject><subject>Technological change</subject><subject>Time series</subject><subject>Ventilation</subject><subject>Waterfowl</subject><subject>Wavelet transforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3HX1HwgOCIIXrflOcyMsix-FhRW_bmMmOdOmzkxqkm7Xf2-6HWUHFCQXCSfPeXPOm1NVTzGaYyrxq03YxcF0820YYI4IZ1iqe9UpVpTMBEH0_p3zSfUopQ1CnC6EeFidUEaUlFSeVt8-hK7bZR-G2g8OburQ1nuTIbZh39WtiX1tUoKUehhybQZXbyM4b28zGpPA1eWQod-GaLrahuE6FL0SHiDvQ_z-uHrQmi7Bk3E_q768ffP54v3s8urd8uL8cmaFUHlW6kFCCXALzAmRAgFntmyy5Uhx3iLeKMIdEg5AgGmblllCwAFCGDEn6Fn17Ki77ULSozlJE84ZV5JSXIjlkXDBbPQ2-t7EnzoYr28DIa60idnbDrQUlslGASeGMSrFYgHGcdVwRiQV5KD1enxt1_TgbDGntD8Rnd4Mfq1X4VovKMIC8yLwfBSI4ccOUv5HySO1MqUqP7ShiNneJ6vPi22MIKwOrc__QpXloPflR6D1JT5JeDlJKEyGm7wyu5T08tPH_2evvk7ZF3fYNZgur1M4jleaguwI2hhSitD-cQ4jfZju327ow3TrcbrpL7IV60Q</recordid><startdate>20210723</startdate><enddate>20210723</enddate><creator>Huang, Jiande</creator><creator>Liu, Shuangyin</creator><creator>Hassan, Shahbaz Gul</creator><creator>Xu, Longqin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3266-1885</orcidid></search><sort><creationdate>20210723</creationdate><title>Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network</title><author>Huang, Jiande ; Liu, Shuangyin ; Hassan, Shahbaz Gul ; Xu, Longqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-2970696ed81522760e54c7607f50955f05b925d06dee6eafbf4c22ede00104d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural engineering</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Ammonia</topic><topic>Big Data</topic><topic>Biology and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Computer and Information Sciences</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Environmental aspects</topic><topic>Environmental management</topic><topic>Environmental quality</topic><topic>Evaluation</topic><topic>Farms</topic><topic>Forecasting</topic><topic>Health care</topic><topic>Higher education</topic><topic>Humidity</topic><topic>Information science</topic><topic>Information technology</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Particulates</topic><topic>Physical Sciences</topic><topic>Pollutants</topic><topic>Pollution control</topic><topic>Pollution index</topic><topic>Poultry</topic><topic>Prediction models</topic><topic>Relative humidity</topic><topic>Research and Analysis Methods</topic><topic>Technological change</topic><topic>Time series</topic><topic>Ventilation</topic><topic>Waterfowl</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jiande</creatorcontrib><creatorcontrib>Liu, Shuangyin</creatorcontrib><creatorcontrib>Hassan, Shahbaz Gul</creatorcontrib><creatorcontrib>Xu, Longqin</creatorcontrib><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jiande</au><au>Liu, Shuangyin</au><au>Hassan, Shahbaz Gul</au><au>Xu, Longqin</au><au>Chen, Chi-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network</atitle><jtitle>PloS one</jtitle><date>2021-07-23</date><risdate>2021</risdate><volume>16</volume><issue>7</issue><spage>e0254179</spage><pages>e0254179-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Environmental quality is a major factor that directly impacts waterfowl productivity. Accurate prediction of pollution index (PI) is the key to improving environmental management and pollution control. This study applied a new neural network model called temporal convolutional network and a denoising algorithm called wavelet transform (WT) for predicting future 12-, 24-, and 48-hour PI values at a waterfowl farm in Shanwei, China. The temporal convoluted network (TCN) model performance was compared with that of recurrent architectures with the same capacity, long-short time memory neural network (LSTM), and gated recurrent unit (GRU). Denoised environmental data, including ammonia, temperature, relative humidity, carbon dioxide (CO.sub.2 ), and total suspended particles (TSP), were used to construct the forecasting model. The simulation results showed that the TCN model in general produced a more precise PI prediction and provided the highest prediction accuracy for all phases (MAE = 0.0842, 0.0859, and 0.1115; RMSE = 0.0154, 0.0167, and 0.0273; R2 = 0.9789, 0.9791, and 0.9635). The PI assessment prediction model based on TCN exhibited the best prediction accuracy and general performance compared with other parallel forecasting models and is a suitable and useful tool for predicting PI in waterfowl farms.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34297737</pmid><doi>10.1371/journal.pone.0254179</doi><tpages>e0254179</tpages><orcidid>https://orcid.org/0000-0003-3266-1885</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-07, Vol.16 (7), p.e0254179 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2554597331 |
source | PubMed Central (Open Access); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Agricultural engineering Agriculture Algorithms Ammonia Big Data Biology and Life Sciences Carbon dioxide Computer and Information Sciences Earth Sciences Ecology and Environmental Sciences Environmental aspects Environmental management Environmental quality Evaluation Farms Forecasting Health care Higher education Humidity Information science Information technology Laboratories Mathematical models Neural networks Noise Noise reduction Particulates Physical Sciences Pollutants Pollution control Pollution index Poultry Prediction models Relative humidity Research and Analysis Methods Technological change Time series Ventilation Waterfowl Wavelet transforms |
title | Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pollution%20index%20of%20waterfowl%20farm%20assessment%20and%20prediction%20based%20on%20temporal%20convoluted%20network&rft.jtitle=PloS%20one&rft.au=Huang,%20Jiande&rft.date=2021-07-23&rft.volume=16&rft.issue=7&rft.spage=e0254179&rft.pages=e0254179-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0254179&rft_dat=%3Cgale_plos_%3EA669420196%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c669t-2970696ed81522760e54c7607f50955f05b925d06dee6eafbf4c22ede00104d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2554597331&rft_id=info:pmid/34297737&rft_galeid=A669420196&rfr_iscdi=true |