Loading…

Solving dynamic multi-objective problems with a new prediction-based optimization algorithm

This paper proposes a new dynamic multi-objective optimization algorithm by integrating a new fitting-based prediction (FBP) mechanism with regularity model-based multi-objective estimation of distribution algorithm (RM-MEDA) for multi-objective optimization in changing environments. The prediction-...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-08, Vol.16 (8), p.e0254839-e0254839
Main Authors: Zhang, Qingyang, Jiang, Shouyong, Yang, Shengxiang, Song, Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a new dynamic multi-objective optimization algorithm by integrating a new fitting-based prediction (FBP) mechanism with regularity model-based multi-objective estimation of distribution algorithm (RM-MEDA) for multi-objective optimization in changing environments. The prediction-based reaction mechanism aims to generate high-quality population when changes occur, which includes three subpopulations for tracking the moving Pareto-optimal set effectively. The first subpopulation is created by a simple linear prediction model with two different stepsizes. The second subpopulation consists of some new sampling individuals generated by the fitting-based prediction strategy. The third subpopulation is created by employing a recent sampling strategy, generating some effective search individuals for improving population convergence and diversity. Experimental results on a set of benchmark functions with a variety of different dynamic characteristics and difficulties illustrate that the proposed algorithm has competitive effectiveness compared with some state-of-the-art algorithms.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0254839