Loading…
Validation of a direct-to-PCR COVID-19 detection protocol utilizing mechanical homogenization: A model for reducing resources needed for accurate testing
Efficient and effective viral detection methodologies are a critical piece in the global response to COVID-19, with PCR-based nasopharyngeal and oropharyngeal swab testing serving as the current gold standard. With over 100 million confirmed cases globally, the supply chains supporting these PCR tes...
Saved in:
Published in: | PloS one 2021-08, Vol.16 (8), p.e0256316-e0256316 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Efficient and effective viral detection methodologies are a critical piece in the global response to COVID-19, with PCR-based nasopharyngeal and oropharyngeal swab testing serving as the current gold standard. With over 100 million confirmed cases globally, the supply chains supporting these PCR testing efforts are under a tremendous amount of stress, driving the need for innovative and accurate diagnostic solutions. Herein, the utility of a direct-to-PCR method of SARS-CoV-2 detection grounded in mechanical homogenization is examined for reducing resources needed for testing while maintaining a comparable sensitivity to the current gold standard workflow of nasopharyngeal and oropharyngeal swab testing. In a head-to-head comparison of 30 patient samples, this initial clinical validation study of the proposed homogenization-based workflow demonstrated significant agreeability with the current extraction-based method utilized while cutting the total resources needed in half. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0256316 |