Loading…

A general method for estimating the prevalence of influenza-like-symptoms with Wikipedia data

Influenza is an acute respiratory seasonal disease that affects millions of people worldwide and causes thousands of deaths in Europe alone. Estimating in a fast and reliable way the impact of an illness on a given country is essential to plan and organize effective countermeasures, which is now pos...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-08, Vol.16 (8), p.e0256858
Main Authors: De Toni, Giovanni, Consonni, Cristian, Montresor, Alberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-90ced67085423b81bf125fcda9a59a1424a7179c90aac116e8519de97e2d34063
cites cdi_FETCH-LOGICAL-c692t-90ced67085423b81bf125fcda9a59a1424a7179c90aac116e8519de97e2d34063
container_end_page
container_issue 8
container_start_page e0256858
container_title PloS one
container_volume 16
creator De Toni, Giovanni
Consonni, Cristian
Montresor, Alberto
description Influenza is an acute respiratory seasonal disease that affects millions of people worldwide and causes thousands of deaths in Europe alone. Estimating in a fast and reliable way the impact of an illness on a given country is essential to plan and organize effective countermeasures, which is now possible by leveraging unconventional data sources like web searches and visits. In this study, we show the feasibility of exploiting machine learning models and information about Wikipedia's page views of a selected group of articles to obtain accurate estimates of influenza-like illnesses incidence in four European countries: Italy, Germany, Belgium, and the Netherlands. We propose a novel language-agnostic method, based on two algorithms, Personalized PageRank and CycleRank, to automatically select the most relevant Wikipedia pages to be monitored without the need for expert supervision. We then show how our model can reach state-of-the-art results by comparing it with previous solutions.
doi_str_mv 10.1371/journal.pone.0256858
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2567968983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673834675</galeid><doaj_id>oai_doaj_org_article_0e4158c4df474311860df96d7caec1ee</doaj_id><sourcerecordid>A673834675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-90ced67085423b81bf125fcda9a59a1424a7179c90aac116e8519de97e2d34063</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFx6RJk_RGGBY_BhYW_LySkElOO9ltm9qkq-uvNzPTXaayF5KLhOQ570nek5MkTzFaYMLxmws3Dp1qFr3rYIHygolC3EuOcUnyjOWI3D9YHyWPvL9AqCCCsYfJEaGUUYrZcfJjmdbQwaCatIWwcSat3JCCD7ZVwXZ1GjaQ9gNcqQY6DamrUttVzQjdH5U19hIyf932wbU-_WXDJv1uL20PxqrUqKAeJw8q1Xh4Ms0nydf3776cfszOzj-sTpdnmWZlHrISaTCMI1HQnKwFXlc4LyptVKmKUmGaU8UxL3WJlNIYMxAFLg2UHHJDKGLkJHm-1-0b5-XkjJfRFF4yUQoSidWeME5dyH6IzxuupVNW7jbcUEs1BKsbkAgoLoSmpqKcEowFQ6YqmeFagcYAUevtlG1ct2A0dCH6NxOdn3R2I2t3JQVFvNhd5tUkMLifYzRbttZraBrVgRt39xY5FYLwiL74B737dRNVxzLJWCAX8-qtqFwyTgShjBeRWtxBxWGgtTp-o8rG_VnA61lAZAL8DrUavZerz5_-nz3_NmdfHrAbUE3YeNeMwbrOz0G6B_XgvB-gujUZI7ntghs35LYL5NQFMezZYYFug26-PfkLAUwCUw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2567968983</pqid></control><display><type>article</type><title>A general method for estimating the prevalence of influenza-like-symptoms with Wikipedia data</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>De Toni, Giovanni ; Consonni, Cristian ; Montresor, Alberto</creator><contributor>Rocha, Luis M.</contributor><creatorcontrib>De Toni, Giovanni ; Consonni, Cristian ; Montresor, Alberto ; Rocha, Luis M.</creatorcontrib><description>Influenza is an acute respiratory seasonal disease that affects millions of people worldwide and causes thousands of deaths in Europe alone. Estimating in a fast and reliable way the impact of an illness on a given country is essential to plan and organize effective countermeasures, which is now possible by leveraging unconventional data sources like web searches and visits. In this study, we show the feasibility of exploiting machine learning models and information about Wikipedia's page views of a selected group of articles to obtain accurate estimates of influenza-like illnesses incidence in four European countries: Italy, Germany, Belgium, and the Netherlands. We propose a novel language-agnostic method, based on two algorithms, Personalized PageRank and CycleRank, to automatically select the most relevant Wikipedia pages to be monitored without the need for expert supervision. We then show how our model can reach state-of-the-art results by comparing it with previous solutions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0256858</identifier><identifier>PMID: 34464416</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Belgium - epidemiology ; Big Data ; Biology and Life Sciences ; Computer science ; Datasets ; Development and progression ; Disease ; Distribution ; Encyclopedias ; Encyclopedias as Topic ; Estimation ; Feasibility studies ; Generalized linear models ; Germany - epidemiology ; Humans ; Illnesses ; Influenza ; Influenza, Human - epidemiology ; Information Seeking Behavior ; Internet ; Italy - epidemiology ; Learning algorithms ; Machine learning ; Medical literature ; Medicine and Health Sciences ; Netherlands - epidemiology ; People and Places ; Prevalence ; Search algorithms ; Signs and symptoms ; Social Sciences ; Technology application</subject><ispartof>PloS one, 2021-08, Vol.16 (8), p.e0256858</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 De Toni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 De Toni et al 2021 De Toni et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-90ced67085423b81bf125fcda9a59a1424a7179c90aac116e8519de97e2d34063</citedby><cites>FETCH-LOGICAL-c692t-90ced67085423b81bf125fcda9a59a1424a7179c90aac116e8519de97e2d34063</cites><orcidid>0000-0002-8387-9983 ; 0000-0002-2490-8967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2567968983/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2567968983?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34464416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rocha, Luis M.</contributor><creatorcontrib>De Toni, Giovanni</creatorcontrib><creatorcontrib>Consonni, Cristian</creatorcontrib><creatorcontrib>Montresor, Alberto</creatorcontrib><title>A general method for estimating the prevalence of influenza-like-symptoms with Wikipedia data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Influenza is an acute respiratory seasonal disease that affects millions of people worldwide and causes thousands of deaths in Europe alone. Estimating in a fast and reliable way the impact of an illness on a given country is essential to plan and organize effective countermeasures, which is now possible by leveraging unconventional data sources like web searches and visits. In this study, we show the feasibility of exploiting machine learning models and information about Wikipedia's page views of a selected group of articles to obtain accurate estimates of influenza-like illnesses incidence in four European countries: Italy, Germany, Belgium, and the Netherlands. We propose a novel language-agnostic method, based on two algorithms, Personalized PageRank and CycleRank, to automatically select the most relevant Wikipedia pages to be monitored without the need for expert supervision. We then show how our model can reach state-of-the-art results by comparing it with previous solutions.</description><subject>Algorithms</subject><subject>Belgium - epidemiology</subject><subject>Big Data</subject><subject>Biology and Life Sciences</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Development and progression</subject><subject>Disease</subject><subject>Distribution</subject><subject>Encyclopedias</subject><subject>Encyclopedias as Topic</subject><subject>Estimation</subject><subject>Feasibility studies</subject><subject>Generalized linear models</subject><subject>Germany - epidemiology</subject><subject>Humans</subject><subject>Illnesses</subject><subject>Influenza</subject><subject>Influenza, Human - epidemiology</subject><subject>Information Seeking Behavior</subject><subject>Internet</subject><subject>Italy - epidemiology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical literature</subject><subject>Medicine and Health Sciences</subject><subject>Netherlands - epidemiology</subject><subject>People and Places</subject><subject>Prevalence</subject><subject>Search algorithms</subject><subject>Signs and symptoms</subject><subject>Social Sciences</subject><subject>Technology application</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFx6RJk_RGGBY_BhYW_LySkElOO9ltm9qkq-uvNzPTXaayF5KLhOQ570nek5MkTzFaYMLxmws3Dp1qFr3rYIHygolC3EuOcUnyjOWI3D9YHyWPvL9AqCCCsYfJEaGUUYrZcfJjmdbQwaCatIWwcSat3JCCD7ZVwXZ1GjaQ9gNcqQY6DamrUttVzQjdH5U19hIyf932wbU-_WXDJv1uL20PxqrUqKAeJw8q1Xh4Ms0nydf3776cfszOzj-sTpdnmWZlHrISaTCMI1HQnKwFXlc4LyptVKmKUmGaU8UxL3WJlNIYMxAFLg2UHHJDKGLkJHm-1-0b5-XkjJfRFF4yUQoSidWeME5dyH6IzxuupVNW7jbcUEs1BKsbkAgoLoSmpqKcEowFQ6YqmeFagcYAUevtlG1ct2A0dCH6NxOdn3R2I2t3JQVFvNhd5tUkMLifYzRbttZraBrVgRt39xY5FYLwiL74B737dRNVxzLJWCAX8-qtqFwyTgShjBeRWtxBxWGgtTp-o8rG_VnA61lAZAL8DrUavZerz5_-nz3_NmdfHrAbUE3YeNeMwbrOz0G6B_XgvB-gujUZI7ntghs35LYL5NQFMezZYYFug26-PfkLAUwCUw</recordid><startdate>20210831</startdate><enddate>20210831</enddate><creator>De Toni, Giovanni</creator><creator>Consonni, Cristian</creator><creator>Montresor, Alberto</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8387-9983</orcidid><orcidid>https://orcid.org/0000-0002-2490-8967</orcidid></search><sort><creationdate>20210831</creationdate><title>A general method for estimating the prevalence of influenza-like-symptoms with Wikipedia data</title><author>De Toni, Giovanni ; Consonni, Cristian ; Montresor, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-90ced67085423b81bf125fcda9a59a1424a7179c90aac116e8519de97e2d34063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Belgium - epidemiology</topic><topic>Big Data</topic><topic>Biology and Life Sciences</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Development and progression</topic><topic>Disease</topic><topic>Distribution</topic><topic>Encyclopedias</topic><topic>Encyclopedias as Topic</topic><topic>Estimation</topic><topic>Feasibility studies</topic><topic>Generalized linear models</topic><topic>Germany - epidemiology</topic><topic>Humans</topic><topic>Illnesses</topic><topic>Influenza</topic><topic>Influenza, Human - epidemiology</topic><topic>Information Seeking Behavior</topic><topic>Internet</topic><topic>Italy - epidemiology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical literature</topic><topic>Medicine and Health Sciences</topic><topic>Netherlands - epidemiology</topic><topic>People and Places</topic><topic>Prevalence</topic><topic>Search algorithms</topic><topic>Signs and symptoms</topic><topic>Social Sciences</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Toni, Giovanni</creatorcontrib><creatorcontrib>Consonni, Cristian</creatorcontrib><creatorcontrib>Montresor, Alberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Toni, Giovanni</au><au>Consonni, Cristian</au><au>Montresor, Alberto</au><au>Rocha, Luis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general method for estimating the prevalence of influenza-like-symptoms with Wikipedia data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-08-31</date><risdate>2021</risdate><volume>16</volume><issue>8</issue><spage>e0256858</spage><pages>e0256858-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Influenza is an acute respiratory seasonal disease that affects millions of people worldwide and causes thousands of deaths in Europe alone. Estimating in a fast and reliable way the impact of an illness on a given country is essential to plan and organize effective countermeasures, which is now possible by leveraging unconventional data sources like web searches and visits. In this study, we show the feasibility of exploiting machine learning models and information about Wikipedia's page views of a selected group of articles to obtain accurate estimates of influenza-like illnesses incidence in four European countries: Italy, Germany, Belgium, and the Netherlands. We propose a novel language-agnostic method, based on two algorithms, Personalized PageRank and CycleRank, to automatically select the most relevant Wikipedia pages to be monitored without the need for expert supervision. We then show how our model can reach state-of-the-art results by comparing it with previous solutions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34464416</pmid><doi>10.1371/journal.pone.0256858</doi><tpages>e0256858</tpages><orcidid>https://orcid.org/0000-0002-8387-9983</orcidid><orcidid>https://orcid.org/0000-0002-2490-8967</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-08, Vol.16 (8), p.e0256858
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2567968983
source PubMed Central Free; Publicly Available Content (ProQuest)
subjects Algorithms
Belgium - epidemiology
Big Data
Biology and Life Sciences
Computer science
Datasets
Development and progression
Disease
Distribution
Encyclopedias
Encyclopedias as Topic
Estimation
Feasibility studies
Generalized linear models
Germany - epidemiology
Humans
Illnesses
Influenza
Influenza, Human - epidemiology
Information Seeking Behavior
Internet
Italy - epidemiology
Learning algorithms
Machine learning
Medical literature
Medicine and Health Sciences
Netherlands - epidemiology
People and Places
Prevalence
Search algorithms
Signs and symptoms
Social Sciences
Technology application
title A general method for estimating the prevalence of influenza-like-symptoms with Wikipedia data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20method%20for%20estimating%20the%20prevalence%20of%20influenza-like-symptoms%20with%20Wikipedia%20data&rft.jtitle=PloS%20one&rft.au=De%20Toni,%20Giovanni&rft.date=2021-08-31&rft.volume=16&rft.issue=8&rft.spage=e0256858&rft.pages=e0256858-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0256858&rft_dat=%3Cgale_plos_%3EA673834675%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-90ced67085423b81bf125fcda9a59a1424a7179c90aac116e8519de97e2d34063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2567968983&rft_id=info:pmid/34464416&rft_galeid=A673834675&rfr_iscdi=true