Loading…
Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis
When approaching thyroid gland tumor classification, the differentiation between samples with and without “papillary thyroid carcinoma-like” nuclei is a daunting task with high inter-observer variability among pathologists. Thus, there is increasing interest in the use of machine learning approaches...
Saved in:
Published in: | PloS one 2021-09, Vol.16 (9), p.e0257635-e0257635 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c669t-8372c0c92a13f2832c6023a16cb1934958bd3dc3cfb6c0576e51473af636de283 |
---|---|
cites | cdi_FETCH-LOGICAL-c669t-8372c0c92a13f2832c6023a16cb1934958bd3dc3cfb6c0576e51473af636de283 |
container_end_page | e0257635 |
container_issue | 9 |
container_start_page | e0257635 |
container_title | PloS one |
container_volume | 16 |
creator | Böhland, Moritz Tharun, Lars Scherr, Tim Mikut, Ralf Hagenmeyer, Veit Thompson, Lester D. R Perner, Sven Reischl, Markus |
description | When approaching thyroid gland tumor classification, the differentiation between samples with and without “papillary thyroid carcinoma-like” nuclei is a daunting task with high inter-observer variability among pathologists. Thus, there is increasing interest in the use of machine learning approaches to provide pathologists real-time decision support. In this paper, we optimize and quantitatively compare two automated machine learning methods for thyroid gland tumor classification on two datasets to assist pathologists in decision-making regarding these methods and their parameters. The first method is a feature-based classification originating from common image processing and consists of cell nucleus segmentation, feature extraction, and subsequent thyroid gland tumor classification utilizing different classifiers. The second method is a deep learning-based classification which directly classifies the input images with a convolutional neural network without the need for cell nucleus segmentation. On the Tharun and Thompson dataset, the feature-based classification achieves an accuracy of 89.7% (Cohen’s Kappa 0.79), compared to the deep learning-based classification of 89.1% (Cohen’s Kappa 0.78). On the Nikiforov dataset, the feature-based classification achieves an accuracy of 83.5% (Cohen’s Kappa 0.46) compared to the deep learning-based classification 77.4% (Cohen’s Kappa 0.35). Thus, both automated thyroid tumor classification methods can reach the classification level of an expert pathologist. To our knowledge, this is the first study comparing feature-based and deep learning-based classification regarding their ability to classify samples with and without papillary thyroid carcinoma-like nuclei on two large-scale datasets. |
doi_str_mv | 10.1371/journal.pone.0257635 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2575312342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676449242</galeid><doaj_id>oai_doaj_org_article_f1cd060f440044d3b6b4f08051f6350e</doaj_id><sourcerecordid>A676449242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-8372c0c92a13f2832c6023a16cb1934958bd3dc3cfb6c0576e51473af636de283</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6DwQDgujFjEnz0XYvhGHxY2Blwa_bkKbJNGuazCbp6vwA_7eZnSpb2QvpRUrynPfkfckpiqcILhGu0OtLPwYn7HLrnVrCklYM03vFMWpwuWAlxPdv_R8Vj2K8hJDimrGHxREmlMKmaY6LXx-F7I1TwCoRnHEbMKjU-y4C7QMQY_KDSKoD0ooYjTZSJOMd8BqkcfAhgh8m9WArtsZaEXYg9bvgTeZFkMbl4oU13xVwo7TKnIIVuBqFSyZlmWsFRDawiyY-Lh5oYaN6Mq0nxdd3b7-cfVicX7xfn63OF5KxJi1qXJUSyqYUCOuyxqVksMQCMdlmq6ShddvhTmKpWyZhTkRRRCosNMOsU7ngpHh20N1aH_mUYOQ5PIpRiUmZifWB6Ly45NtghuyKe2H4zYYPGy5CMtkN10h2kEFNCISEdLhlLdGwhhTlfhSqrPVm6ja2g-qkcikIOxOdnzjT842_5jWhFaEoC7ycBIK_GlVMfDBRqpy0U3483LvGkDUso8__Qe92N1EbkQ0Yp33uK_eifMUqRkhT3lDLO6j8dWowMj83bfL-rODVrCAzSf1MGzHGyNefP_0_e_Ftzr64xfZK2NRHb8f9E4xzkBxAGXyMQem_ISPI99PyJw2-nxY-TQv-DS93BzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575312342</pqid></control><display><type>article</type><title>Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Böhland, Moritz ; Tharun, Lars ; Scherr, Tim ; Mikut, Ralf ; Hagenmeyer, Veit ; Thompson, Lester D. R ; Perner, Sven ; Reischl, Markus</creator><contributor>Bychkov, Andrey</contributor><creatorcontrib>Böhland, Moritz ; Tharun, Lars ; Scherr, Tim ; Mikut, Ralf ; Hagenmeyer, Veit ; Thompson, Lester D. R ; Perner, Sven ; Reischl, Markus ; Bychkov, Andrey</creatorcontrib><description>When approaching thyroid gland tumor classification, the differentiation between samples with and without “papillary thyroid carcinoma-like” nuclei is a daunting task with high inter-observer variability among pathologists. Thus, there is increasing interest in the use of machine learning approaches to provide pathologists real-time decision support. In this paper, we optimize and quantitatively compare two automated machine learning methods for thyroid gland tumor classification on two datasets to assist pathologists in decision-making regarding these methods and their parameters. The first method is a feature-based classification originating from common image processing and consists of cell nucleus segmentation, feature extraction, and subsequent thyroid gland tumor classification utilizing different classifiers. The second method is a deep learning-based classification which directly classifies the input images with a convolutional neural network without the need for cell nucleus segmentation. On the Tharun and Thompson dataset, the feature-based classification achieves an accuracy of 89.7% (Cohen’s Kappa 0.79), compared to the deep learning-based classification of 89.1% (Cohen’s Kappa 0.78). On the Nikiforov dataset, the feature-based classification achieves an accuracy of 83.5% (Cohen’s Kappa 0.46) compared to the deep learning-based classification 77.4% (Cohen’s Kappa 0.35). Thus, both automated thyroid tumor classification methods can reach the classification level of an expert pathologist. To our knowledge, this is the first study comparing feature-based and deep learning-based classification regarding their ability to classify samples with and without papillary thyroid carcinoma-like nuclei on two large-scale datasets.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0257635</identifier><identifier>PMID: 34550999</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Accuracy ; Analysis ; Artificial neural networks ; Automation ; Biology and Life Sciences ; Classification ; Computer and Information Sciences ; Datasets ; Decision making ; Deep learning ; Engineering and Technology ; Feature extraction ; Gene expression ; Genetic aspects ; Identification and classification ; Image classification ; Image processing ; Image segmentation ; Informatics ; Learning algorithms ; Machine learning ; Medicine and Health Sciences ; Neural networks ; Nuclei ; Papillary thyroid carcinoma ; Pathology ; People and Places ; Quantitative analysis ; Thyroid ; Thyroid cancer ; Thyroid gland ; Tumors</subject><ispartof>PloS one, 2021-09, Vol.16 (9), p.e0257635-e0257635</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Böhland et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Böhland et al 2021 Böhland et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-8372c0c92a13f2832c6023a16cb1934958bd3dc3cfb6c0576e51473af636de283</citedby><cites>FETCH-LOGICAL-c669t-8372c0c92a13f2832c6023a16cb1934958bd3dc3cfb6c0576e51473af636de283</cites><orcidid>0000-0002-3572-9083 ; 0000-0001-8755-2825 ; 0000-0002-9321-8169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2575312342/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2575312342?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><contributor>Bychkov, Andrey</contributor><creatorcontrib>Böhland, Moritz</creatorcontrib><creatorcontrib>Tharun, Lars</creatorcontrib><creatorcontrib>Scherr, Tim</creatorcontrib><creatorcontrib>Mikut, Ralf</creatorcontrib><creatorcontrib>Hagenmeyer, Veit</creatorcontrib><creatorcontrib>Thompson, Lester D. R</creatorcontrib><creatorcontrib>Perner, Sven</creatorcontrib><creatorcontrib>Reischl, Markus</creatorcontrib><title>Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis</title><title>PloS one</title><description>When approaching thyroid gland tumor classification, the differentiation between samples with and without “papillary thyroid carcinoma-like” nuclei is a daunting task with high inter-observer variability among pathologists. Thus, there is increasing interest in the use of machine learning approaches to provide pathologists real-time decision support. In this paper, we optimize and quantitatively compare two automated machine learning methods for thyroid gland tumor classification on two datasets to assist pathologists in decision-making regarding these methods and their parameters. The first method is a feature-based classification originating from common image processing and consists of cell nucleus segmentation, feature extraction, and subsequent thyroid gland tumor classification utilizing different classifiers. The second method is a deep learning-based classification which directly classifies the input images with a convolutional neural network without the need for cell nucleus segmentation. On the Tharun and Thompson dataset, the feature-based classification achieves an accuracy of 89.7% (Cohen’s Kappa 0.79), compared to the deep learning-based classification of 89.1% (Cohen’s Kappa 0.78). On the Nikiforov dataset, the feature-based classification achieves an accuracy of 83.5% (Cohen’s Kappa 0.46) compared to the deep learning-based classification 77.4% (Cohen’s Kappa 0.35). Thus, both automated thyroid tumor classification methods can reach the classification level of an expert pathologist. To our knowledge, this is the first study comparing feature-based and deep learning-based classification regarding their ability to classify samples with and without papillary thyroid carcinoma-like nuclei on two large-scale datasets.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Engineering and Technology</subject><subject>Feature extraction</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Identification and classification</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Informatics</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Neural networks</subject><subject>Nuclei</subject><subject>Papillary thyroid carcinoma</subject><subject>Pathology</subject><subject>People and Places</subject><subject>Quantitative analysis</subject><subject>Thyroid</subject><subject>Thyroid cancer</subject><subject>Thyroid gland</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6DwQDgujFjEnz0XYvhGHxY2Blwa_bkKbJNGuazCbp6vwA_7eZnSpb2QvpRUrynPfkfckpiqcILhGu0OtLPwYn7HLrnVrCklYM03vFMWpwuWAlxPdv_R8Vj2K8hJDimrGHxREmlMKmaY6LXx-F7I1TwCoRnHEbMKjU-y4C7QMQY_KDSKoD0ooYjTZSJOMd8BqkcfAhgh8m9WArtsZaEXYg9bvgTeZFkMbl4oU13xVwo7TKnIIVuBqFSyZlmWsFRDawiyY-Lh5oYaN6Mq0nxdd3b7-cfVicX7xfn63OF5KxJi1qXJUSyqYUCOuyxqVksMQCMdlmq6ShddvhTmKpWyZhTkRRRCosNMOsU7ngpHh20N1aH_mUYOQ5PIpRiUmZifWB6Ly45NtghuyKe2H4zYYPGy5CMtkN10h2kEFNCISEdLhlLdGwhhTlfhSqrPVm6ja2g-qkcikIOxOdnzjT842_5jWhFaEoC7ycBIK_GlVMfDBRqpy0U3483LvGkDUso8__Qe92N1EbkQ0Yp33uK_eifMUqRkhT3lDLO6j8dWowMj83bfL-rODVrCAzSf1MGzHGyNefP_0_e_Ftzr64xfZK2NRHb8f9E4xzkBxAGXyMQem_ISPI99PyJw2-nxY-TQv-DS93BzQ</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Böhland, Moritz</creator><creator>Tharun, Lars</creator><creator>Scherr, Tim</creator><creator>Mikut, Ralf</creator><creator>Hagenmeyer, Veit</creator><creator>Thompson, Lester D. R</creator><creator>Perner, Sven</creator><creator>Reischl, Markus</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3572-9083</orcidid><orcidid>https://orcid.org/0000-0001-8755-2825</orcidid><orcidid>https://orcid.org/0000-0002-9321-8169</orcidid></search><sort><creationdate>20210922</creationdate><title>Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis</title><author>Böhland, Moritz ; Tharun, Lars ; Scherr, Tim ; Mikut, Ralf ; Hagenmeyer, Veit ; Thompson, Lester D. R ; Perner, Sven ; Reischl, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-8372c0c92a13f2832c6023a16cb1934958bd3dc3cfb6c0576e51473af636de283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Engineering and Technology</topic><topic>Feature extraction</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Identification and classification</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Informatics</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Neural networks</topic><topic>Nuclei</topic><topic>Papillary thyroid carcinoma</topic><topic>Pathology</topic><topic>People and Places</topic><topic>Quantitative analysis</topic><topic>Thyroid</topic><topic>Thyroid cancer</topic><topic>Thyroid gland</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhland, Moritz</creatorcontrib><creatorcontrib>Tharun, Lars</creatorcontrib><creatorcontrib>Scherr, Tim</creatorcontrib><creatorcontrib>Mikut, Ralf</creatorcontrib><creatorcontrib>Hagenmeyer, Veit</creatorcontrib><creatorcontrib>Thompson, Lester D. R</creatorcontrib><creatorcontrib>Perner, Sven</creatorcontrib><creatorcontrib>Reischl, Markus</creatorcontrib><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhland, Moritz</au><au>Tharun, Lars</au><au>Scherr, Tim</au><au>Mikut, Ralf</au><au>Hagenmeyer, Veit</au><au>Thompson, Lester D. R</au><au>Perner, Sven</au><au>Reischl, Markus</au><au>Bychkov, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis</atitle><jtitle>PloS one</jtitle><date>2021-09-22</date><risdate>2021</risdate><volume>16</volume><issue>9</issue><spage>e0257635</spage><epage>e0257635</epage><pages>e0257635-e0257635</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>When approaching thyroid gland tumor classification, the differentiation between samples with and without “papillary thyroid carcinoma-like” nuclei is a daunting task with high inter-observer variability among pathologists. Thus, there is increasing interest in the use of machine learning approaches to provide pathologists real-time decision support. In this paper, we optimize and quantitatively compare two automated machine learning methods for thyroid gland tumor classification on two datasets to assist pathologists in decision-making regarding these methods and their parameters. The first method is a feature-based classification originating from common image processing and consists of cell nucleus segmentation, feature extraction, and subsequent thyroid gland tumor classification utilizing different classifiers. The second method is a deep learning-based classification which directly classifies the input images with a convolutional neural network without the need for cell nucleus segmentation. On the Tharun and Thompson dataset, the feature-based classification achieves an accuracy of 89.7% (Cohen’s Kappa 0.79), compared to the deep learning-based classification of 89.1% (Cohen’s Kappa 0.78). On the Nikiforov dataset, the feature-based classification achieves an accuracy of 83.5% (Cohen’s Kappa 0.46) compared to the deep learning-based classification 77.4% (Cohen’s Kappa 0.35). Thus, both automated thyroid tumor classification methods can reach the classification level of an expert pathologist. To our knowledge, this is the first study comparing feature-based and deep learning-based classification regarding their ability to classify samples with and without papillary thyroid carcinoma-like nuclei on two large-scale datasets.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34550999</pmid><doi>10.1371/journal.pone.0257635</doi><tpages>e0257635</tpages><orcidid>https://orcid.org/0000-0002-3572-9083</orcidid><orcidid>https://orcid.org/0000-0001-8755-2825</orcidid><orcidid>https://orcid.org/0000-0002-9321-8169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-09, Vol.16 (9), p.e0257635-e0257635 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2575312342 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Analysis Artificial neural networks Automation Biology and Life Sciences Classification Computer and Information Sciences Datasets Decision making Deep learning Engineering and Technology Feature extraction Gene expression Genetic aspects Identification and classification Image classification Image processing Image segmentation Informatics Learning algorithms Machine learning Medicine and Health Sciences Neural networks Nuclei Papillary thyroid carcinoma Pathology People and Places Quantitative analysis Thyroid Thyroid cancer Thyroid gland Tumors |
title | Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20methods%20for%20automated%20classification%20of%20tumors%20with%20papillary%20thyroid%20carcinoma-like%20nuclei:%20A%20quantitative%20analysis&rft.jtitle=PloS%20one&rft.au=B%C3%B6hland,%20Moritz&rft.date=2021-09-22&rft.volume=16&rft.issue=9&rft.spage=e0257635&rft.epage=e0257635&rft.pages=e0257635-e0257635&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0257635&rft_dat=%3Cgale_plos_%3EA676449242%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c669t-8372c0c92a13f2832c6023a16cb1934958bd3dc3cfb6c0576e51473af636de283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575312342&rft_id=info:pmid/34550999&rft_galeid=A676449242&rfr_iscdi=true |