Loading…

Description of an Australian endemic species of Trioza (Hemiptera: Triozidae) pest of the endemic tea tree, Melaleuca alternifolia (Myrtaceae)

Psyllids, also known as jumping plant lice, are phloem feeding Hemiptera that often show a strict species-specific relationship with their host plants. When psyllid-plant associations involve economically important crops, this may lead to the recognition of a psyllid species as an agricultural or ho...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-09, Vol.16 (9), p.e0257031-e0257031
Main Authors: Martoni, Francesco, Blacket, Mark J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Psyllids, also known as jumping plant lice, are phloem feeding Hemiptera that often show a strict species-specific relationship with their host plants. When psyllid-plant associations involve economically important crops, this may lead to the recognition of a psyllid species as an agricultural or horticultural pest. The Australian endemic tea tree, Melaleuca alternifolia (Maiden & Betche) Cheel., has been used for more than a century to extract essential oils and, long before that, as a traditional medicine by Indigenous Australian people. Recently, a triozid species has been found to damage the new growth of tea trees both in Queensland and New South Wales, raising interest around this previously undocumented pest. Furthermore, adults of the same species were also collected from Citrus plantations, leading to potential false-positive records of the exotic pest Trioza erytreae (Del Guercio 1918), the African Citrus psyllid. Here we describe for the first time Trioza melaleucae Martoni sp. nov. providing information on its distribution, host plant associations and phylogenetic relationships to other Trioza species. This work enables both morphological and molecular identification of this new species, allowing it to be recognized and distinguished for the first time from exotic pests as well as other Australian native psyllids. Furthermore, the haplotype network analysis presented here suggests a close relationship between Trioza melaleucae and the other Myrtaceae-feeding Trioza spp. from Australia, New Zealand, and Taiwan.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0257031