Loading…

Effects of combined tannic acid/fluoride on sulfur transformations and methanogenic pathways in swine manure

Livestock manure emits reduced sulfur compounds and methane, which affect nature and the climate. These gases are efficiently mitigated by addition of a tannic acid-sodium fluoride combination inhibitor (TA-NaF), and to some extent by acidification. In this paper, TA-NaF treatment was performed on s...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2021-09, Vol.16 (9), p.e0257759
Main Authors: Dalby, Frederik Rask, Nikolausz, Marcell, Hansen, Michael Jørgen, Feilberg, Anders
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Livestock manure emits reduced sulfur compounds and methane, which affect nature and the climate. These gases are efficiently mitigated by addition of a tannic acid-sodium fluoride combination inhibitor (TA-NaF), and to some extent by acidification. In this paper, TA-NaF treatment was performed on swine manure to study the treatment influence on methanogenic pathways and sulfur transformation pathways in various laboratory experiments. Stable carbon isotope labeling revealed that both untreated and TA-NaF treated swine manures were dominated by hydrogenotrophic methanogenesis. However, in supplementary experiments in wastewater sludge, TA-NaF clearly inhibited acetoclastic methanogenesis, whereas acidification inhibited hydrogenotrophic methanogenesis. In swine manure, TA-NaF inhibited s-amino acid catabolism to a larger extent than sulfate reduction. Conversely, acidification reduced sulfate reduction activity more than s-amino acid degradation. TA-NaF treatment had no significant effect on methanogenic community structure, which was surprising considering clear effects on isotope ratios of methane and carbon dioxide. Halophile sulfate reducers adapted well to TA-NaF treatment, but the community change also depended on temperature. The combined experimental work resulted in a proposed inhibition scheme for sulfur transformations and methanogenic pathways as affected by TA-NaF and acidification in swine manure and in other inocula.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0257759