Loading…
A novel pre-clinical strategy to deliver antimicrobial doses of inhaled nitric oxide
Effective treatment of respiratory infections continues to be a major challenge. In high doses (≥160 ppm), inhaled Nitric Oxide (iNO) has been shown to act as a broad-spectrum antimicrobial agent, including its efficacy in vitro for coronavirus family. However, the safety of prolonged in vivo implem...
Saved in:
Published in: | PloS one 2021-10, Vol.16 (10), p.e0258368-e0258368 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Effective treatment of respiratory infections continues to be a major challenge. In high doses (≥160 ppm), inhaled Nitric Oxide (iNO) has been shown to act as a broad-spectrum antimicrobial agent, including its efficacy in vitro for coronavirus family. However, the safety of prolonged in vivo implementation of high-dose iNO therapy has not been studied. Herein we aim to explore the feasibility and safety of delivering continuous high-dose iNO over an extended period of time using an in vivo animal model. Yorkshire pigs were randomized to one of the following two groups: group 1, standard ventilation; and group 2, standard ventilation + continuous iNO 160 ppm + methylene blue (MB) as intravenous bolus, whenever required, to maintain metHb |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0258368 |