Loading…

The chromatin remodeler Chd1 supports MRX and Exo1 functions in resection of DNA double-strand breaks

Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5'-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2021-09, Vol.17 (9), p.e1009807-e1009807
Main Authors: Gnugnoli, Marco, Casari, Erika, Longhese, Maria Pia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c726t-c52cac1c4dcbb03aac060d2aa6d8fce232aa6a441a3ca381c8cbe3dcd2c4c35a3
cites cdi_FETCH-LOGICAL-c726t-c52cac1c4dcbb03aac060d2aa6d8fce232aa6a441a3ca381c8cbe3dcd2c4c35a3
container_end_page e1009807
container_issue 9
container_start_page e1009807
container_title PLoS genetics
container_volume 17
creator Gnugnoli, Marco
Casari, Erika
Longhese, Maria Pia
description Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5'-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed by a long-range step involving the nucleases Exo1 and Dna2. Here we show that the Saccharomyces cerevisiae ATP-dependent chromatin-remodeling protein Chd1 participates in both short- and long-range resection by promoting MRX and Exo1 association with the DSB ends. Furthermore, Chd1 reduces histone occupancy near the DSB ends and promotes DSB repair by HR. All these functions require Chd1 ATPase activity, supporting a role for Chd1 in the opening of chromatin at the DSB site to facilitate MRX and Exo1 processing activities.
doi_str_mv 10.1371/journal.pgen.1009807
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2582589316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677509457</galeid><doaj_id>oai_doaj_org_article_bf785901828e4d50aea3d20a881a9212</doaj_id><sourcerecordid>A677509457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-c52cac1c4dcbb03aac060d2aa6d8fce232aa6a441a3ca381c8cbe3dcd2c4c35a3</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYmPwDxBYQkJw0eLPJrmZVJUBlcYmjYG4s07skzYliYudoPHvcdpuatEuQLbkr-d97WP7JMlzRsdMpOzdyvW-hXq8XmA7ZpTmGU0fJMdMKTFKJZUP9_pHyZMQVpQKleXp4-RISMWpVOo4weslErP0roGuaonHxlms0ZPZ0jIS-vXa-S6Qz1ffCbSWnN04Rsq-NV3l2kA2ioCbEXEleX8xJdb1RY2j0PlBUHiEH-Fp8qiEOuCzXXuSfP1wdj37NDq__DifTc9HJuWTbmQUN2CYkdYUBRUAhk6o5QATm5UGuRi6ICUDYUBkzGSmQGGN5UYaoUCcJC-3vuvaBb27oaC5ymLNBZtEYr4lrIOVXvuqAf9bO6j0ZsL5hQbfVaZGXZRppnLKMp6htIoCgrCcQpYxyDnj0et0t1tfNGgNtjHm-sD0cKWtlnrhfulMTngqVTR4szPw7mePodNNFQzWNbTo-uHcKc-FYrmI6Ku_0Puj21ELiAFUbenivmYw1dNJmiqaS5VGanwPFYvFpjKuxbKK8weCtweCyHR40y2gD0HPv1z9B3vx7-zlt0P29R67RKi7ZXB1v_mIh6Dcgsa7EDyWdw_CqB4y5_bm9JA5epc5UfZi_zHvRLepIv4ASyMS_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582589316</pqid></control><display><type>article</type><title>The chromatin remodeler Chd1 supports MRX and Exo1 functions in resection of DNA double-strand breaks</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Gnugnoli, Marco ; Casari, Erika ; Longhese, Maria Pia</creator><contributor>Jinks-Robertson, Sue</contributor><creatorcontrib>Gnugnoli, Marco ; Casari, Erika ; Longhese, Maria Pia ; Jinks-Robertson, Sue</creatorcontrib><description>Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5'-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed by a long-range step involving the nucleases Exo1 and Dna2. Here we show that the Saccharomyces cerevisiae ATP-dependent chromatin-remodeling protein Chd1 participates in both short- and long-range resection by promoting MRX and Exo1 association with the DSB ends. Furthermore, Chd1 reduces histone occupancy near the DSB ends and promotes DSB repair by HR. All these functions require Chd1 ATPase activity, supporting a role for Chd1 in the opening of chromatin at the DSB site to facilitate MRX and Exo1 processing activities.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009807</identifier><identifier>PMID: 34520455</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine triphosphatase ; Biology and life sciences ; Chromatin ; Chromatin remodeling ; Chromosomes ; DNA binding proteins ; DNA Breaks, Double-Stranded ; DNA damage ; DNA repair ; DNA-Binding Proteins - physiology ; Efficiency ; Evictions ; Exodeoxyribonucleases - metabolism ; Experiments ; Genes, Fungal ; Genetic research ; Histones ; Histones - isolation &amp; purification ; Homologous recombination ; Medicine and Health Sciences ; MRE11 protein ; Nuclease ; Physical sciences ; Prostate cancer ; Proteins ; RNA polymerase ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - physiology ; Single-stranded DNA ; Structure ; Yeast</subject><ispartof>PLoS genetics, 2021-09, Vol.17 (9), p.e1009807-e1009807</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Gnugnoli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Gnugnoli et al 2021 Gnugnoli et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-c52cac1c4dcbb03aac060d2aa6d8fce232aa6a441a3ca381c8cbe3dcd2c4c35a3</citedby><cites>FETCH-LOGICAL-c726t-c52cac1c4dcbb03aac060d2aa6d8fce232aa6a441a3ca381c8cbe3dcd2c4c35a3</cites><orcidid>0000-0002-4096-714X ; 0000-0001-6131-0879 ; 0000-0003-1726-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2582589316/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2582589316?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34520455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jinks-Robertson, Sue</contributor><creatorcontrib>Gnugnoli, Marco</creatorcontrib><creatorcontrib>Casari, Erika</creatorcontrib><creatorcontrib>Longhese, Maria Pia</creatorcontrib><title>The chromatin remodeler Chd1 supports MRX and Exo1 functions in resection of DNA double-strand breaks</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5'-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed by a long-range step involving the nucleases Exo1 and Dna2. Here we show that the Saccharomyces cerevisiae ATP-dependent chromatin-remodeling protein Chd1 participates in both short- and long-range resection by promoting MRX and Exo1 association with the DSB ends. Furthermore, Chd1 reduces histone occupancy near the DSB ends and promotes DSB repair by HR. All these functions require Chd1 ATPase activity, supporting a role for Chd1 in the opening of chromatin at the DSB site to facilitate MRX and Exo1 processing activities.</description><subject>Adenosine triphosphatase</subject><subject>Biology and life sciences</subject><subject>Chromatin</subject><subject>Chromatin remodeling</subject><subject>Chromosomes</subject><subject>DNA binding proteins</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Efficiency</subject><subject>Evictions</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Experiments</subject><subject>Genes, Fungal</subject><subject>Genetic research</subject><subject>Histones</subject><subject>Histones - isolation &amp; purification</subject><subject>Homologous recombination</subject><subject>Medicine and Health Sciences</subject><subject>MRE11 protein</subject><subject>Nuclease</subject><subject>Physical sciences</subject><subject>Prostate cancer</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Single-stranded DNA</subject><subject>Structure</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYmPwDxBYQkJw0eLPJrmZVJUBlcYmjYG4s07skzYliYudoPHvcdpuatEuQLbkr-d97WP7JMlzRsdMpOzdyvW-hXq8XmA7ZpTmGU0fJMdMKTFKJZUP9_pHyZMQVpQKleXp4-RISMWpVOo4weslErP0roGuaonHxlms0ZPZ0jIS-vXa-S6Qz1ffCbSWnN04Rsq-NV3l2kA2ioCbEXEleX8xJdb1RY2j0PlBUHiEH-Fp8qiEOuCzXXuSfP1wdj37NDq__DifTc9HJuWTbmQUN2CYkdYUBRUAhk6o5QATm5UGuRi6ICUDYUBkzGSmQGGN5UYaoUCcJC-3vuvaBb27oaC5ymLNBZtEYr4lrIOVXvuqAf9bO6j0ZsL5hQbfVaZGXZRppnLKMp6htIoCgrCcQpYxyDnj0et0t1tfNGgNtjHm-sD0cKWtlnrhfulMTngqVTR4szPw7mePodNNFQzWNbTo-uHcKc-FYrmI6Ku_0Puj21ELiAFUbenivmYw1dNJmiqaS5VGanwPFYvFpjKuxbKK8weCtweCyHR40y2gD0HPv1z9B3vx7-zlt0P29R67RKi7ZXB1v_mIh6Dcgsa7EDyWdw_CqB4y5_bm9JA5epc5UfZi_zHvRLepIv4ASyMS_g</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Gnugnoli, Marco</creator><creator>Casari, Erika</creator><creator>Longhese, Maria Pia</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4096-714X</orcidid><orcidid>https://orcid.org/0000-0001-6131-0879</orcidid><orcidid>https://orcid.org/0000-0003-1726-2034</orcidid></search><sort><creationdate>20210914</creationdate><title>The chromatin remodeler Chd1 supports MRX and Exo1 functions in resection of DNA double-strand breaks</title><author>Gnugnoli, Marco ; Casari, Erika ; Longhese, Maria Pia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-c52cac1c4dcbb03aac060d2aa6d8fce232aa6a441a3ca381c8cbe3dcd2c4c35a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine triphosphatase</topic><topic>Biology and life sciences</topic><topic>Chromatin</topic><topic>Chromatin remodeling</topic><topic>Chromosomes</topic><topic>DNA binding proteins</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Efficiency</topic><topic>Evictions</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Experiments</topic><topic>Genes, Fungal</topic><topic>Genetic research</topic><topic>Histones</topic><topic>Histones - isolation &amp; purification</topic><topic>Homologous recombination</topic><topic>Medicine and Health Sciences</topic><topic>MRE11 protein</topic><topic>Nuclease</topic><topic>Physical sciences</topic><topic>Prostate cancer</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Single-stranded DNA</topic><topic>Structure</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnugnoli, Marco</creatorcontrib><creatorcontrib>Casari, Erika</creatorcontrib><creatorcontrib>Longhese, Maria Pia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnugnoli, Marco</au><au>Casari, Erika</au><au>Longhese, Maria Pia</au><au>Jinks-Robertson, Sue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The chromatin remodeler Chd1 supports MRX and Exo1 functions in resection of DNA double-strand breaks</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>e1009807</spage><epage>e1009807</epage><pages>e1009807-e1009807</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5'-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed by a long-range step involving the nucleases Exo1 and Dna2. Here we show that the Saccharomyces cerevisiae ATP-dependent chromatin-remodeling protein Chd1 participates in both short- and long-range resection by promoting MRX and Exo1 association with the DSB ends. Furthermore, Chd1 reduces histone occupancy near the DSB ends and promotes DSB repair by HR. All these functions require Chd1 ATPase activity, supporting a role for Chd1 in the opening of chromatin at the DSB site to facilitate MRX and Exo1 processing activities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34520455</pmid><doi>10.1371/journal.pgen.1009807</doi><orcidid>https://orcid.org/0000-0002-4096-714X</orcidid><orcidid>https://orcid.org/0000-0001-6131-0879</orcidid><orcidid>https://orcid.org/0000-0003-1726-2034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2021-09, Vol.17 (9), p.e1009807-e1009807
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2582589316
source Publicly Available Content Database; PubMed Central
subjects Adenosine triphosphatase
Biology and life sciences
Chromatin
Chromatin remodeling
Chromosomes
DNA binding proteins
DNA Breaks, Double-Stranded
DNA damage
DNA repair
DNA-Binding Proteins - physiology
Efficiency
Evictions
Exodeoxyribonucleases - metabolism
Experiments
Genes, Fungal
Genetic research
Histones
Histones - isolation & purification
Homologous recombination
Medicine and Health Sciences
MRE11 protein
Nuclease
Physical sciences
Prostate cancer
Proteins
RNA polymerase
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - physiology
Single-stranded DNA
Structure
Yeast
title The chromatin remodeler Chd1 supports MRX and Exo1 functions in resection of DNA double-strand breaks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20chromatin%20remodeler%20Chd1%20supports%20MRX%20and%20Exo1%20functions%20in%20resection%20of%20DNA%20double-strand%20breaks&rft.jtitle=PLoS%20genetics&rft.au=Gnugnoli,%20Marco&rft.date=2021-09-14&rft.volume=17&rft.issue=9&rft.spage=e1009807&rft.epage=e1009807&rft.pages=e1009807-e1009807&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009807&rft_dat=%3Cgale_plos_%3EA677509457%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-c52cac1c4dcbb03aac060d2aa6d8fce232aa6a441a3ca381c8cbe3dcd2c4c35a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582589316&rft_id=info:pmid/34520455&rft_galeid=A677509457&rfr_iscdi=true