Loading…
Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits
The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity...
Saved in:
Published in: | PLoS computational biology 2021-10, Vol.17 (10), p.e1009483-e1009483 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903 |
---|---|
cites | cdi_FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903 |
container_end_page | e1009483 |
container_issue | 10 |
container_start_page | e1009483 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Johnson, Ruth Burch, Kathryn S Hou, Kangcheng Paciuc, Mario Pasaniuc, Bogdan Sankararaman, Sriram |
description | The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity varies across genomic regions is currently lacking. In this work, we propose an accurate and scalable statistical framework to estimate regional polygenicity for a complex trait. We show that our approach yields approximately unbiased estimates of regional polygenicity in simulations across a wide-range of various genetic architectures. We then partition the polygenicity of anthropometric and blood pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all analyzed traits are highly polygenic: over one-third of regions harbor at least one causal variant for each of the traits analyzed. Additionally, we observe wide variation in regional polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability is proportional to polygenicity at the regional level, which is consistent with the hypothesis that heritability enrichments are largely driven by the variation in the number of causal SNPs. |
doi_str_mv | 10.1371/journal.pcbi.1009483 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2598108859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681018638</galeid><doaj_id>oai_doaj_org_article_397105d5a3a848d596928729a27ee1ab</doaj_id><sourcerecordid>A681018638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I_YFaVWVslIFEgVxtBxnkvUqiVPbqbr_HofdVl3EBfng0fiZdzyvJsteY7TEpMQft27yg-6Wo6nsEiMkqSBPslPMGFmUhImnj-KT7EUIW4RSKPnz7IRQXpKS89PMXYRoex2tG3LX5B7aFOkuH123a2GwxsZd3njX55e_Vtf56N2trSHkdgi23cQ5iC6PG8gTDdGaXHuzsRFMnDzMksb1Ywd3efTaxvAye9boLsCrw32W_fx88eP8y-Lq2-X6fHW1MFzQuJCC88IYJhgBaTQXWBQVE43koqwop4RXwjSIUGxoAXUtoCFI61qXqBaFROQse7vXHTsX1MGroAomBUZCMJmI9Z6ond6q0ScX_E45bdWfhPOt0j4N1IEissSI1UwTLaiomeSyEGUhdVECYF0lrU-HblPVQ21gSNN2R6LHL4PdqNbdKsF4IXCZBN4fBLy7mSBE1dtgoOv0AG6a_y0oJaQsaELf_YX-e7rlnmp1GsAOjUt9TTo19Na4ARqb8qtkLMKCE5EKPhwVJCbCXWz1FIJaX3__D_brMUv3rPEuBA_NgysYqXmR77-v5kVWh0VOZW8eO_pQdL-55DcDQPBQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598108859</pqid></control><display><type>article</type><title>Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Johnson, Ruth ; Burch, Kathryn S ; Hou, Kangcheng ; Paciuc, Mario ; Pasaniuc, Bogdan ; Sankararaman, Sriram</creator><contributor>Wheeler, Heather E.</contributor><creatorcontrib>Johnson, Ruth ; Burch, Kathryn S ; Hou, Kangcheng ; Paciuc, Mario ; Pasaniuc, Bogdan ; Sankararaman, Sriram ; Wheeler, Heather E.</creatorcontrib><description>The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity varies across genomic regions is currently lacking. In this work, we propose an accurate and scalable statistical framework to estimate regional polygenicity for a complex trait. We show that our approach yields approximately unbiased estimates of regional polygenicity in simulations across a wide-range of various genetic architectures. We then partition the polygenicity of anthropometric and blood pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all analyzed traits are highly polygenic: over one-third of regions harbor at least one causal variant for each of the traits analyzed. Additionally, we observe wide variation in regional polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability is proportional to polygenicity at the regional level, which is consistent with the hypothesis that heritability enrichments are largely driven by the variation in the number of causal SNPs.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009483</identifier><identifier>PMID: 34673766</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Blood pressure ; Blood Pressure - genetics ; Genetic variation ; Genome, Human - genetics ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Genomics - methods ; Heritability ; Humans ; Markov analysis ; Medicine and Health Sciences ; Multifactorial Inheritance - genetics ; Noise ; Polygenic inheritance ; Polymorphism, Single Nucleotide - genetics ; Probability ; Random variables ; Regions ; Simulation ; Single-nucleotide polymorphism</subject><ispartof>PLoS computational biology, 2021-10, Vol.17 (10), p.e1009483-e1009483</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Johnson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Johnson et al 2021 Johnson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903</citedby><cites>FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903</cites><orcidid>0000-0001-9624-2108 ; 0000-0002-1929-0998 ; 0000-0003-1586-9641 ; 0000-0001-7110-5596 ; 0000-0002-0227-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2598108859/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2598108859?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34673766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wheeler, Heather E.</contributor><creatorcontrib>Johnson, Ruth</creatorcontrib><creatorcontrib>Burch, Kathryn S</creatorcontrib><creatorcontrib>Hou, Kangcheng</creatorcontrib><creatorcontrib>Paciuc, Mario</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><creatorcontrib>Sankararaman, Sriram</creatorcontrib><title>Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity varies across genomic regions is currently lacking. In this work, we propose an accurate and scalable statistical framework to estimate regional polygenicity for a complex trait. We show that our approach yields approximately unbiased estimates of regional polygenicity in simulations across a wide-range of various genetic architectures. We then partition the polygenicity of anthropometric and blood pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all analyzed traits are highly polygenic: over one-third of regions harbor at least one causal variant for each of the traits analyzed. Additionally, we observe wide variation in regional polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability is proportional to polygenicity at the regional level, which is consistent with the hypothesis that heritability enrichments are largely driven by the variation in the number of causal SNPs.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Blood Pressure - genetics</subject><subject>Genetic variation</subject><subject>Genome, Human - genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Heritability</subject><subject>Humans</subject><subject>Markov analysis</subject><subject>Medicine and Health Sciences</subject><subject>Multifactorial Inheritance - genetics</subject><subject>Noise</subject><subject>Polygenic inheritance</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Probability</subject><subject>Random variables</subject><subject>Regions</subject><subject>Simulation</subject><subject>Single-nucleotide polymorphism</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I_YFaVWVslIFEgVxtBxnkvUqiVPbqbr_HofdVl3EBfng0fiZdzyvJsteY7TEpMQft27yg-6Wo6nsEiMkqSBPslPMGFmUhImnj-KT7EUIW4RSKPnz7IRQXpKS89PMXYRoex2tG3LX5B7aFOkuH123a2GwxsZd3njX55e_Vtf56N2trSHkdgi23cQ5iC6PG8gTDdGaXHuzsRFMnDzMksb1Ywd3efTaxvAye9boLsCrw32W_fx88eP8y-Lq2-X6fHW1MFzQuJCC88IYJhgBaTQXWBQVE43koqwop4RXwjSIUGxoAXUtoCFI61qXqBaFROQse7vXHTsX1MGroAomBUZCMJmI9Z6ond6q0ScX_E45bdWfhPOt0j4N1IEissSI1UwTLaiomeSyEGUhdVECYF0lrU-HblPVQ21gSNN2R6LHL4PdqNbdKsF4IXCZBN4fBLy7mSBE1dtgoOv0AG6a_y0oJaQsaELf_YX-e7rlnmp1GsAOjUt9TTo19Na4ARqb8qtkLMKCE5EKPhwVJCbCXWz1FIJaX3__D_brMUv3rPEuBA_NgysYqXmR77-v5kVWh0VOZW8eO_pQdL-55DcDQPBQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Johnson, Ruth</creator><creator>Burch, Kathryn S</creator><creator>Hou, Kangcheng</creator><creator>Paciuc, Mario</creator><creator>Pasaniuc, Bogdan</creator><creator>Sankararaman, Sriram</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9624-2108</orcidid><orcidid>https://orcid.org/0000-0002-1929-0998</orcidid><orcidid>https://orcid.org/0000-0003-1586-9641</orcidid><orcidid>https://orcid.org/0000-0001-7110-5596</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid></search><sort><creationdate>20211001</creationdate><title>Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits</title><author>Johnson, Ruth ; Burch, Kathryn S ; Hou, Kangcheng ; Paciuc, Mario ; Pasaniuc, Bogdan ; Sankararaman, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Blood Pressure - genetics</topic><topic>Genetic variation</topic><topic>Genome, Human - genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Heritability</topic><topic>Humans</topic><topic>Markov analysis</topic><topic>Medicine and Health Sciences</topic><topic>Multifactorial Inheritance - genetics</topic><topic>Noise</topic><topic>Polygenic inheritance</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Probability</topic><topic>Random variables</topic><topic>Regions</topic><topic>Simulation</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Ruth</creatorcontrib><creatorcontrib>Burch, Kathryn S</creatorcontrib><creatorcontrib>Hou, Kangcheng</creatorcontrib><creatorcontrib>Paciuc, Mario</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><creatorcontrib>Sankararaman, Sriram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Ruth</au><au>Burch, Kathryn S</au><au>Hou, Kangcheng</au><au>Paciuc, Mario</au><au>Pasaniuc, Bogdan</au><au>Sankararaman, Sriram</au><au>Wheeler, Heather E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>e1009483</spage><epage>e1009483</epage><pages>e1009483-e1009483</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity varies across genomic regions is currently lacking. In this work, we propose an accurate and scalable statistical framework to estimate regional polygenicity for a complex trait. We show that our approach yields approximately unbiased estimates of regional polygenicity in simulations across a wide-range of various genetic architectures. We then partition the polygenicity of anthropometric and blood pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all analyzed traits are highly polygenic: over one-third of regions harbor at least one causal variant for each of the traits analyzed. Additionally, we observe wide variation in regional polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability is proportional to polygenicity at the regional level, which is consistent with the hypothesis that heritability enrichments are largely driven by the variation in the number of causal SNPs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34673766</pmid><doi>10.1371/journal.pcbi.1009483</doi><orcidid>https://orcid.org/0000-0001-9624-2108</orcidid><orcidid>https://orcid.org/0000-0002-1929-0998</orcidid><orcidid>https://orcid.org/0000-0003-1586-9641</orcidid><orcidid>https://orcid.org/0000-0001-7110-5596</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-10, Vol.17 (10), p.e1009483-e1009483 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2598108859 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Biology and Life Sciences Blood pressure Blood Pressure - genetics Genetic variation Genome, Human - genetics Genome-wide association studies Genome-Wide Association Study - methods Genomes Genomics Genomics - methods Heritability Humans Markov analysis Medicine and Health Sciences Multifactorial Inheritance - genetics Noise Polygenic inheritance Polymorphism, Single Nucleotide - genetics Probability Random variables Regions Simulation Single-nucleotide polymorphism |
title | Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20regional%20polygenicity%20from%20GWAS%20provides%20insights%20into%20the%20genetic%20architecture%20of%20complex%20traits&rft.jtitle=PLoS%20computational%20biology&rft.au=Johnson,%20Ruth&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=e1009483&rft.epage=e1009483&rft.pages=e1009483-e1009483&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009483&rft_dat=%3Cgale_plos_%3EA681018638%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2598108859&rft_id=info:pmid/34673766&rft_galeid=A681018638&rfr_iscdi=true |