Loading…

Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits

The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2021-10, Vol.17 (10), p.e1009483-e1009483
Main Authors: Johnson, Ruth, Burch, Kathryn S, Hou, Kangcheng, Paciuc, Mario, Pasaniuc, Bogdan, Sankararaman, Sriram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903
cites cdi_FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903
container_end_page e1009483
container_issue 10
container_start_page e1009483
container_title PLoS computational biology
container_volume 17
creator Johnson, Ruth
Burch, Kathryn S
Hou, Kangcheng
Paciuc, Mario
Pasaniuc, Bogdan
Sankararaman, Sriram
description The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity varies across genomic regions is currently lacking. In this work, we propose an accurate and scalable statistical framework to estimate regional polygenicity for a complex trait. We show that our approach yields approximately unbiased estimates of regional polygenicity in simulations across a wide-range of various genetic architectures. We then partition the polygenicity of anthropometric and blood pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all analyzed traits are highly polygenic: over one-third of regions harbor at least one causal variant for each of the traits analyzed. Additionally, we observe wide variation in regional polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability is proportional to polygenicity at the regional level, which is consistent with the hypothesis that heritability enrichments are largely driven by the variation in the number of causal SNPs.
doi_str_mv 10.1371/journal.pcbi.1009483
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2598108859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681018638</galeid><doaj_id>oai_doaj_org_article_397105d5a3a848d596928729a27ee1ab</doaj_id><sourcerecordid>A681018638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I_YFaVWVslIFEgVxtBxnkvUqiVPbqbr_HofdVl3EBfng0fiZdzyvJsteY7TEpMQft27yg-6Wo6nsEiMkqSBPslPMGFmUhImnj-KT7EUIW4RSKPnz7IRQXpKS89PMXYRoex2tG3LX5B7aFOkuH123a2GwxsZd3njX55e_Vtf56N2trSHkdgi23cQ5iC6PG8gTDdGaXHuzsRFMnDzMksb1Ywd3efTaxvAye9boLsCrw32W_fx88eP8y-Lq2-X6fHW1MFzQuJCC88IYJhgBaTQXWBQVE43koqwop4RXwjSIUGxoAXUtoCFI61qXqBaFROQse7vXHTsX1MGroAomBUZCMJmI9Z6ond6q0ScX_E45bdWfhPOt0j4N1IEissSI1UwTLaiomeSyEGUhdVECYF0lrU-HblPVQ21gSNN2R6LHL4PdqNbdKsF4IXCZBN4fBLy7mSBE1dtgoOv0AG6a_y0oJaQsaELf_YX-e7rlnmp1GsAOjUt9TTo19Na4ARqb8qtkLMKCE5EKPhwVJCbCXWz1FIJaX3__D_brMUv3rPEuBA_NgysYqXmR77-v5kVWh0VOZW8eO_pQdL-55DcDQPBQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598108859</pqid></control><display><type>article</type><title>Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Johnson, Ruth ; Burch, Kathryn S ; Hou, Kangcheng ; Paciuc, Mario ; Pasaniuc, Bogdan ; Sankararaman, Sriram</creator><contributor>Wheeler, Heather E.</contributor><creatorcontrib>Johnson, Ruth ; Burch, Kathryn S ; Hou, Kangcheng ; Paciuc, Mario ; Pasaniuc, Bogdan ; Sankararaman, Sriram ; Wheeler, Heather E.</creatorcontrib><description>The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity varies across genomic regions is currently lacking. In this work, we propose an accurate and scalable statistical framework to estimate regional polygenicity for a complex trait. We show that our approach yields approximately unbiased estimates of regional polygenicity in simulations across a wide-range of various genetic architectures. We then partition the polygenicity of anthropometric and blood pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all analyzed traits are highly polygenic: over one-third of regions harbor at least one causal variant for each of the traits analyzed. Additionally, we observe wide variation in regional polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability is proportional to polygenicity at the regional level, which is consistent with the hypothesis that heritability enrichments are largely driven by the variation in the number of causal SNPs.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009483</identifier><identifier>PMID: 34673766</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Blood pressure ; Blood Pressure - genetics ; Genetic variation ; Genome, Human - genetics ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Genomics - methods ; Heritability ; Humans ; Markov analysis ; Medicine and Health Sciences ; Multifactorial Inheritance - genetics ; Noise ; Polygenic inheritance ; Polymorphism, Single Nucleotide - genetics ; Probability ; Random variables ; Regions ; Simulation ; Single-nucleotide polymorphism</subject><ispartof>PLoS computational biology, 2021-10, Vol.17 (10), p.e1009483-e1009483</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Johnson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Johnson et al 2021 Johnson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903</citedby><cites>FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903</cites><orcidid>0000-0001-9624-2108 ; 0000-0002-1929-0998 ; 0000-0003-1586-9641 ; 0000-0001-7110-5596 ; 0000-0002-0227-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2598108859/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2598108859?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34673766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wheeler, Heather E.</contributor><creatorcontrib>Johnson, Ruth</creatorcontrib><creatorcontrib>Burch, Kathryn S</creatorcontrib><creatorcontrib>Hou, Kangcheng</creatorcontrib><creatorcontrib>Paciuc, Mario</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><creatorcontrib>Sankararaman, Sriram</creatorcontrib><title>Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity varies across genomic regions is currently lacking. In this work, we propose an accurate and scalable statistical framework to estimate regional polygenicity for a complex trait. We show that our approach yields approximately unbiased estimates of regional polygenicity in simulations across a wide-range of various genetic architectures. We then partition the polygenicity of anthropometric and blood pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all analyzed traits are highly polygenic: over one-third of regions harbor at least one causal variant for each of the traits analyzed. Additionally, we observe wide variation in regional polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability is proportional to polygenicity at the regional level, which is consistent with the hypothesis that heritability enrichments are largely driven by the variation in the number of causal SNPs.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Blood Pressure - genetics</subject><subject>Genetic variation</subject><subject>Genome, Human - genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Heritability</subject><subject>Humans</subject><subject>Markov analysis</subject><subject>Medicine and Health Sciences</subject><subject>Multifactorial Inheritance - genetics</subject><subject>Noise</subject><subject>Polygenic inheritance</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Probability</subject><subject>Random variables</subject><subject>Regions</subject><subject>Simulation</subject><subject>Single-nucleotide polymorphism</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXez4I_YFaVWVslIFEgVxtBxnkvUqiVPbqbr_HofdVl3EBfng0fiZdzyvJsteY7TEpMQft27yg-6Wo6nsEiMkqSBPslPMGFmUhImnj-KT7EUIW4RSKPnz7IRQXpKS89PMXYRoex2tG3LX5B7aFOkuH123a2GwxsZd3njX55e_Vtf56N2trSHkdgi23cQ5iC6PG8gTDdGaXHuzsRFMnDzMksb1Ywd3efTaxvAye9boLsCrw32W_fx88eP8y-Lq2-X6fHW1MFzQuJCC88IYJhgBaTQXWBQVE43koqwop4RXwjSIUGxoAXUtoCFI61qXqBaFROQse7vXHTsX1MGroAomBUZCMJmI9Z6ond6q0ScX_E45bdWfhPOt0j4N1IEissSI1UwTLaiomeSyEGUhdVECYF0lrU-HblPVQ21gSNN2R6LHL4PdqNbdKsF4IXCZBN4fBLy7mSBE1dtgoOv0AG6a_y0oJaQsaELf_YX-e7rlnmp1GsAOjUt9TTo19Na4ARqb8qtkLMKCE5EKPhwVJCbCXWz1FIJaX3__D_brMUv3rPEuBA_NgysYqXmR77-v5kVWh0VOZW8eO_pQdL-55DcDQPBQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Johnson, Ruth</creator><creator>Burch, Kathryn S</creator><creator>Hou, Kangcheng</creator><creator>Paciuc, Mario</creator><creator>Pasaniuc, Bogdan</creator><creator>Sankararaman, Sriram</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9624-2108</orcidid><orcidid>https://orcid.org/0000-0002-1929-0998</orcidid><orcidid>https://orcid.org/0000-0003-1586-9641</orcidid><orcidid>https://orcid.org/0000-0001-7110-5596</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid></search><sort><creationdate>20211001</creationdate><title>Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits</title><author>Johnson, Ruth ; Burch, Kathryn S ; Hou, Kangcheng ; Paciuc, Mario ; Pasaniuc, Bogdan ; Sankararaman, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Blood Pressure - genetics</topic><topic>Genetic variation</topic><topic>Genome, Human - genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Heritability</topic><topic>Humans</topic><topic>Markov analysis</topic><topic>Medicine and Health Sciences</topic><topic>Multifactorial Inheritance - genetics</topic><topic>Noise</topic><topic>Polygenic inheritance</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Probability</topic><topic>Random variables</topic><topic>Regions</topic><topic>Simulation</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Ruth</creatorcontrib><creatorcontrib>Burch, Kathryn S</creatorcontrib><creatorcontrib>Hou, Kangcheng</creatorcontrib><creatorcontrib>Paciuc, Mario</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><creatorcontrib>Sankararaman, Sriram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Ruth</au><au>Burch, Kathryn S</au><au>Hou, Kangcheng</au><au>Paciuc, Mario</au><au>Pasaniuc, Bogdan</au><au>Sankararaman, Sriram</au><au>Wheeler, Heather E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>e1009483</spage><epage>e1009483</epage><pages>e1009483-e1009483</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a fundamental parameter in the study of the genetic architecture of a complex trait. Although many previous studies have investigated polygenicity at a genome-wide scale, a detailed understanding of how polygenicity varies across genomic regions is currently lacking. In this work, we propose an accurate and scalable statistical framework to estimate regional polygenicity for a complex trait. We show that our approach yields approximately unbiased estimates of regional polygenicity in simulations across a wide-range of various genetic architectures. We then partition the polygenicity of anthropometric and blood pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all analyzed traits are highly polygenic: over one-third of regions harbor at least one causal variant for each of the traits analyzed. Additionally, we observe wide variation in regional polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability is proportional to polygenicity at the regional level, which is consistent with the hypothesis that heritability enrichments are largely driven by the variation in the number of causal SNPs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34673766</pmid><doi>10.1371/journal.pcbi.1009483</doi><orcidid>https://orcid.org/0000-0001-9624-2108</orcidid><orcidid>https://orcid.org/0000-0002-1929-0998</orcidid><orcidid>https://orcid.org/0000-0003-1586-9641</orcidid><orcidid>https://orcid.org/0000-0001-7110-5596</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-10, Vol.17 (10), p.e1009483-e1009483
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2598108859
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Biology and Life Sciences
Blood pressure
Blood Pressure - genetics
Genetic variation
Genome, Human - genetics
Genome-wide association studies
Genome-Wide Association Study - methods
Genomes
Genomics
Genomics - methods
Heritability
Humans
Markov analysis
Medicine and Health Sciences
Multifactorial Inheritance - genetics
Noise
Polygenic inheritance
Polymorphism, Single Nucleotide - genetics
Probability
Random variables
Regions
Simulation
Single-nucleotide polymorphism
title Estimation of regional polygenicity from GWAS provides insights into the genetic architecture of complex traits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20regional%20polygenicity%20from%20GWAS%20provides%20insights%20into%20the%20genetic%20architecture%20of%20complex%20traits&rft.jtitle=PLoS%20computational%20biology&rft.au=Johnson,%20Ruth&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=e1009483&rft.epage=e1009483&rft.pages=e1009483-e1009483&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009483&rft_dat=%3Cgale_plos_%3EA681018638%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c684t-98662cc5853e9ca68182b58f9687b46436b8cf0341c42edd8ef30aada70d82903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2598108859&rft_id=info:pmid/34673766&rft_galeid=A681018638&rfr_iscdi=true