Loading…

NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1

In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2021-11, Vol.17 (11), p.e1009933-e1009933
Main Authors: Shen, Yang, Endale, Mehari, Wang, Wei, Morris, Andrew R, Francey, Lauren J, Harold, Rachel L, Hammers, David W, Huo, Zhiguang, Partch, Carrie L, Hogenesch, John B, Wu, Zhao-Hui, Liu, Andrew C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-ebd8681aa2e5f3f64268a2c8c8cc1adbb0e859030b5bd6ae26c8925fb7958fb33
cites cdi_FETCH-LOGICAL-c526t-ebd8681aa2e5f3f64268a2c8c8cc1adbb0e859030b5bd6ae26c8925fb7958fb33
container_end_page e1009933
container_issue 11
container_start_page e1009933
container_title PLoS genetics
container_volume 17
creator Shen, Yang
Endale, Mehari
Wang, Wei
Morris, Andrew R
Francey, Lauren J
Harold, Rachel L
Hammers, David W
Huo, Zhiguang
Partch, Carrie L
Hogenesch, John B
Wu, Zhao-Hui
Liu, Andrew C
description In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.
doi_str_mv 10.1371/journal.pgen.1009933
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2610942187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8c322ffad905458f9004ba7659bb8655</doaj_id><sourcerecordid>2601481497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-ebd8681aa2e5f3f64268a2c8c8cc1adbb0e859030b5bd6ae26c8925fb7958fb33</originalsourceid><addsrcrecordid>eNptUstu1DAUtRCIloE_QBCJDZsMfsfeILVVC5UG2MDaunacGQ9JPNgJiF_rR_BNZGbSqkXIC1_5nnN87tVB6CXBS8Iq8m4bx9RDu9ytfb8kGGvN2CN0SoRgZcUxf3yvPkHPct5izITS1VN0wrjClSb0FLnPV-Wfm_Oii3Vogs_FsPFFB10HbYC-cCE5qA9VG933qZviuN4UoR98AjeE2Be_wrA50FxMfsbtUhx86IvzT2cr8hw9aaDN_sV8L9C3q8uvFx_L1ZcP1xdnq9IJKofS21pJRQCoFw1rJKdSAXVqOo5AbS32SmjMsBW2luCpdEpT0dhKC9VYxhbo9VF318Zs5v1kQyXBmlOiqglxfUTUEbZml0IH6beJEMzhIaa1gTQE13qjHKO0aaDWWPBJX2PMLVRSaGuVnBa7QO_n30bb-dr5fkjQPhB92OnDxqzjT6MkV5OjSeDtLJDij9HnwXQhO9-20Ps47n1jMiG53vt-8w_0_9PxI8qlmHPyzZ0Zgs0-M7css8-MmTMz0V7dH-SOdBsS9hcd38Cn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610942187</pqid></control><display><type>article</type><title>NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1</title><source>Publicly Available Content (ProQuest)</source><source>PubMed</source><creator>Shen, Yang ; Endale, Mehari ; Wang, Wei ; Morris, Andrew R ; Francey, Lauren J ; Harold, Rachel L ; Hammers, David W ; Huo, Zhiguang ; Partch, Carrie L ; Hogenesch, John B ; Wu, Zhao-Hui ; Liu, Andrew C</creator><contributor>Kramer, Achim</contributor><creatorcontrib>Shen, Yang ; Endale, Mehari ; Wang, Wei ; Morris, Andrew R ; Francey, Lauren J ; Harold, Rachel L ; Hammers, David W ; Huo, Zhiguang ; Partch, Carrie L ; Hogenesch, John B ; Wu, Zhao-Hui ; Liu, Andrew C ; Kramer, Achim</creatorcontrib><description>In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009933</identifier><identifier>PMID: 34807912</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; ARNTL Transcription Factors - genetics ; Biology and Life Sciences ; Bioluminescence ; BMAL1 protein ; Calcium-Binding Proteins - genetics ; Cell Line, Tumor ; Chromatin ; Circadian Clocks - genetics ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian rhythms ; Clock gene ; CLOCK Proteins - genetics ; Cryptochromes ; Cryptochromes - genetics ; Gene expression ; Gene Expression Regulation, Developmental - genetics ; Humans ; Immunoprecipitation ; Independent sample ; Inflammation ; Inflammation - genetics ; Inflammation - pathology ; Kinases ; Locomotor activity ; Mammals ; NF-kappa B - genetics ; NF-κB protein ; Phenotypes ; Physiology ; RelA protein ; Research and analysis methods ; Suprachiasmatic nucleus ; Suprachiasmatic Nucleus - metabolism ; Transcription Factor RelA - genetics ; Transcription factors</subject><ispartof>PLoS genetics, 2021-11, Vol.17 (11), p.e1009933-e1009933</ispartof><rights>2021 Shen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Shen et al 2021 Shen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-ebd8681aa2e5f3f64268a2c8c8cc1adbb0e859030b5bd6ae26c8925fb7958fb33</citedby><cites>FETCH-LOGICAL-c526t-ebd8681aa2e5f3f64268a2c8c8cc1adbb0e859030b5bd6ae26c8925fb7958fb33</cites><orcidid>0000-0002-1684-4780 ; 0000-0003-2129-4047 ; 0000-0002-1224-9415 ; 0000-0003-1927-0900 ; 0000-0002-4121-1467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2610942187/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2610942187?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34807912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kramer, Achim</contributor><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Endale, Mehari</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Morris, Andrew R</creatorcontrib><creatorcontrib>Francey, Lauren J</creatorcontrib><creatorcontrib>Harold, Rachel L</creatorcontrib><creatorcontrib>Hammers, David W</creatorcontrib><creatorcontrib>Huo, Zhiguang</creatorcontrib><creatorcontrib>Partch, Carrie L</creatorcontrib><creatorcontrib>Hogenesch, John B</creatorcontrib><creatorcontrib>Wu, Zhao-Hui</creatorcontrib><creatorcontrib>Liu, Andrew C</creatorcontrib><title>NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.</description><subject>Animals</subject><subject>ARNTL Transcription Factors - genetics</subject><subject>Biology and Life Sciences</subject><subject>Bioluminescence</subject><subject>BMAL1 protein</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Cell Line, Tumor</subject><subject>Chromatin</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian rhythms</subject><subject>Clock gene</subject><subject>CLOCK Proteins - genetics</subject><subject>Cryptochromes</subject><subject>Cryptochromes - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Independent sample</subject><subject>Inflammation</subject><subject>Inflammation - genetics</subject><subject>Inflammation - pathology</subject><subject>Kinases</subject><subject>Locomotor activity</subject><subject>Mammals</subject><subject>NF-kappa B - genetics</subject><subject>NF-κB protein</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>RelA protein</subject><subject>Research and analysis methods</subject><subject>Suprachiasmatic nucleus</subject><subject>Suprachiasmatic Nucleus - metabolism</subject><subject>Transcription Factor RelA - genetics</subject><subject>Transcription factors</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUtRCIloE_QBCJDZsMfsfeILVVC5UG2MDaunacGQ9JPNgJiF_rR_BNZGbSqkXIC1_5nnN87tVB6CXBS8Iq8m4bx9RDu9ytfb8kGGvN2CN0SoRgZcUxf3yvPkHPct5izITS1VN0wrjClSb0FLnPV-Wfm_Oii3Vogs_FsPFFB10HbYC-cCE5qA9VG933qZviuN4UoR98AjeE2Be_wrA50FxMfsbtUhx86IvzT2cr8hw9aaDN_sV8L9C3q8uvFx_L1ZcP1xdnq9IJKofS21pJRQCoFw1rJKdSAXVqOo5AbS32SmjMsBW2luCpdEpT0dhKC9VYxhbo9VF318Zs5v1kQyXBmlOiqglxfUTUEbZml0IH6beJEMzhIaa1gTQE13qjHKO0aaDWWPBJX2PMLVRSaGuVnBa7QO_n30bb-dr5fkjQPhB92OnDxqzjT6MkV5OjSeDtLJDij9HnwXQhO9-20Ps47n1jMiG53vt-8w_0_9PxI8qlmHPyzZ0Zgs0-M7css8-MmTMz0V7dH-SOdBsS9hcd38Cn</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Shen, Yang</creator><creator>Endale, Mehari</creator><creator>Wang, Wei</creator><creator>Morris, Andrew R</creator><creator>Francey, Lauren J</creator><creator>Harold, Rachel L</creator><creator>Hammers, David W</creator><creator>Huo, Zhiguang</creator><creator>Partch, Carrie L</creator><creator>Hogenesch, John B</creator><creator>Wu, Zhao-Hui</creator><creator>Liu, Andrew C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1684-4780</orcidid><orcidid>https://orcid.org/0000-0003-2129-4047</orcidid><orcidid>https://orcid.org/0000-0002-1224-9415</orcidid><orcidid>https://orcid.org/0000-0003-1927-0900</orcidid><orcidid>https://orcid.org/0000-0002-4121-1467</orcidid></search><sort><creationdate>20211101</creationdate><title>NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1</title><author>Shen, Yang ; Endale, Mehari ; Wang, Wei ; Morris, Andrew R ; Francey, Lauren J ; Harold, Rachel L ; Hammers, David W ; Huo, Zhiguang ; Partch, Carrie L ; Hogenesch, John B ; Wu, Zhao-Hui ; Liu, Andrew C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-ebd8681aa2e5f3f64268a2c8c8cc1adbb0e859030b5bd6ae26c8925fb7958fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>ARNTL Transcription Factors - genetics</topic><topic>Biology and Life Sciences</topic><topic>Bioluminescence</topic><topic>BMAL1 protein</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Cell Line, Tumor</topic><topic>Chromatin</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian rhythms</topic><topic>Clock gene</topic><topic>CLOCK Proteins - genetics</topic><topic>Cryptochromes</topic><topic>Cryptochromes - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Independent sample</topic><topic>Inflammation</topic><topic>Inflammation - genetics</topic><topic>Inflammation - pathology</topic><topic>Kinases</topic><topic>Locomotor activity</topic><topic>Mammals</topic><topic>NF-kappa B - genetics</topic><topic>NF-κB protein</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>RelA protein</topic><topic>Research and analysis methods</topic><topic>Suprachiasmatic nucleus</topic><topic>Suprachiasmatic Nucleus - metabolism</topic><topic>Transcription Factor RelA - genetics</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Endale, Mehari</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Morris, Andrew R</creatorcontrib><creatorcontrib>Francey, Lauren J</creatorcontrib><creatorcontrib>Harold, Rachel L</creatorcontrib><creatorcontrib>Hammers, David W</creatorcontrib><creatorcontrib>Huo, Zhiguang</creatorcontrib><creatorcontrib>Partch, Carrie L</creatorcontrib><creatorcontrib>Hogenesch, John B</creatorcontrib><creatorcontrib>Wu, Zhao-Hui</creatorcontrib><creatorcontrib>Liu, Andrew C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yang</au><au>Endale, Mehari</au><au>Wang, Wei</au><au>Morris, Andrew R</au><au>Francey, Lauren J</au><au>Harold, Rachel L</au><au>Hammers, David W</au><au>Huo, Zhiguang</au><au>Partch, Carrie L</au><au>Hogenesch, John B</au><au>Wu, Zhao-Hui</au><au>Liu, Andrew C</au><au>Kramer, Achim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>17</volume><issue>11</issue><spage>e1009933</spage><epage>e1009933</epage><pages>e1009933-e1009933</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34807912</pmid><doi>10.1371/journal.pgen.1009933</doi><orcidid>https://orcid.org/0000-0002-1684-4780</orcidid><orcidid>https://orcid.org/0000-0003-2129-4047</orcidid><orcidid>https://orcid.org/0000-0002-1224-9415</orcidid><orcidid>https://orcid.org/0000-0003-1927-0900</orcidid><orcidid>https://orcid.org/0000-0002-4121-1467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2021-11, Vol.17 (11), p.e1009933-e1009933
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2610942187
source Publicly Available Content (ProQuest); PubMed
subjects Animals
ARNTL Transcription Factors - genetics
Biology and Life Sciences
Bioluminescence
BMAL1 protein
Calcium-Binding Proteins - genetics
Cell Line, Tumor
Chromatin
Circadian Clocks - genetics
Circadian rhythm
Circadian Rhythm - genetics
Circadian rhythms
Clock gene
CLOCK Proteins - genetics
Cryptochromes
Cryptochromes - genetics
Gene expression
Gene Expression Regulation, Developmental - genetics
Humans
Immunoprecipitation
Independent sample
Inflammation
Inflammation - genetics
Inflammation - pathology
Kinases
Locomotor activity
Mammals
NF-kappa B - genetics
NF-κB protein
Phenotypes
Physiology
RelA protein
Research and analysis methods
Suprachiasmatic nucleus
Suprachiasmatic Nucleus - metabolism
Transcription Factor RelA - genetics
Transcription factors
title NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NF-%CE%BAB%20modifies%20the%20mammalian%20circadian%20clock%20through%20interaction%20with%20the%20core%20clock%20protein%20BMAL1&rft.jtitle=PLoS%20genetics&rft.au=Shen,%20Yang&rft.date=2021-11-01&rft.volume=17&rft.issue=11&rft.spage=e1009933&rft.epage=e1009933&rft.pages=e1009933-e1009933&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009933&rft_dat=%3Cproquest_plos_%3E2601481497%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-ebd8681aa2e5f3f64268a2c8c8cc1adbb0e859030b5bd6ae26c8925fb7958fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610942187&rft_id=info:pmid/34807912&rfr_iscdi=true