Loading…

Genome-wide analysis of mRNAs, lncRNAs, and circRNAs during intramuscular adipogenesis in Chinese Guizhou Congjiang pigs

Intramuscular fat content is an important determinant of meat quality, and preadipocyte differentiation plays a critical role in intramuscular fat deposition in pigs. However, many types of RNA differentiation, including messenger RNA (mRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA)...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-01, Vol.17 (1), p.e0261293-e0261293
Main Authors: Tan, Lulin, Chen, Zhaojun, Teng, MingDe, Chen, Bin, Xu, Houqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intramuscular fat content is an important determinant of meat quality, and preadipocyte differentiation plays a critical role in intramuscular fat deposition in pigs. However, many types of RNA differentiation, including messenger RNA (mRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) remain unreported despite their crucial roles in regulating adipogenesis. Chinese Guizhou Congjiang pigs are raised in the Guizhou province of China for their high-quality meat. Therefore, it is important for breeders to explore the mechanisms of proliferation and differentiation of intramuscular adipocytes from the longissimus dorsi muscle of these pigs. In the present study, a transcriptome analysis of intramuscular preadipocytes from Chinese Guizhou Congjiang pigs, including analyses of mRNAs, lncRNAs, and circRNAs at days 0 (D0), 4 (D4), and 8 (D8) was performed. A total of 1,538, 639, and 445 differentially expressed (DE) mRNAs, 479, 192, and 126 DE lncRNAs, and 360, 439, and 304 DE circRNAs were detected between D4 and D0, D8 and D0, and D8 and D4, respectively. Functional analyses identified many significantly enriched RNAs related to lipid deposition, cell differentiation, metabolism processes, and obesity-related diseases, biological processes, and pathways. We identified two lncRNAs (TCONS_00012086 and TCONS_00007245) closely related to fat deposition according to their target genes and tissue expression profiles. Subcellular distribution analysis using quantitative real-time PCR (qRT-PCR) revealed that both TCONS_00012086 and TCONS_00007245 are cytoplasmic lncRNAs. These data provide a genome-wide resource for mRNAs, lncRNAs, and circRNAs potentially involved in Chinese Guizhou Congjiang pig fat metabolism, thus improving our understanding of their function in adipogenesis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0261293