Loading…
Bifidobacterium lactis BL-99 modulates intestinal inflammation and functions in zebrafish models
This study was designed to explore the therapeutics and the mechanisms of a patented and marked gastric acid and intestine juice-resistant probiotics Bifidobacterium lactis BL-99 (B. lactis BL-99) on the intestinal inflammation and functions in the zebrafish models. After feeding for 6 hours, B. lac...
Saved in:
Published in: | PloS one 2022-02, Vol.17 (2), p.e0262942 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study was designed to explore the therapeutics and the mechanisms of a patented and marked gastric acid and intestine juice-resistant probiotics Bifidobacterium lactis BL-99 (B. lactis BL-99) on the intestinal inflammation and functions in the zebrafish models. After feeding for 6 hours, B. lactis BL-99 was fully retained in the larval zebrafish intestinal tract and stayed for over 24 hours. B. lactis BL-99 promoted the intestinal motility and effectively alleviated aluminum sulfate-induced larval zebrafish constipation (p < 0.01). Irregular high glucose diet induced adult zebrafish intestinal functional and metabolic disorders. After fed with B. lactis BL-99, IL-1β gene expression was significantly down-regulated, and IL-10 and IL-12 gene levels were markedly up-regulated in this model (p < 0.05). The intestinal lipase activity was elevated in the adult zebrafish intestinal functional disorder model after B. lactis BL-99 treatment (p < 0.05), but tryptase content had no statistical changes (p > 0.05). B. lactis BL-99 improved the histopathology of the adult zebrafish intestinal inflammation, increased the goblet cell numbers, and up-and-down metabolites were markedly recovered after treatment of B. lactis BL-99 (p < 0.05). These results suggest that B. lactis BL-99 could relieve intestinal inflammation and promote intestinal functions, at least in part, through modulating intestinal and microbial metabolism to maintain intestinal health. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0262942 |