Loading…

Ipragliflozin attenuates non-alcoholic steatohepatitis development in an animal model

Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease with no decisive treatment. The sodium glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin was developed as a new oral hypoglycemic drug, which can improve NASH via an insulin-independent glucose-lowering effect by inhibiting...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-02, Vol.17 (2), p.e0261310-e0261310
Main Authors: Morishita, Asahiro, Tadokoro, Tomoko, Fujihara, Shintaro, Iwama, Hisakazu, Oura, Kyoko, Fujita, Koji, Tani, Joji, Takuma, Kei, Nakahara, Mai, Shi, Tingting, Haba, Reiji, Okano, Keiichi, Nishiyama, Akira, Ono, Masafumi, Himoto, Takashi, Masaki, Tsutomu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease with no decisive treatment. The sodium glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin was developed as a new oral hypoglycemic drug, which can improve NASH via an insulin-independent glucose-lowering effect by inhibiting glucose reabsorption in the renal proximal tubules. However, ipragliflozin appears to modulate steatosis or inflammation via different pathways. To elucidate the new mechanism of ipragliflozin for the treatment of NASH, we evaluated its effects in a NASH mouse model (STAM mice) with beta cell depletion, and compared the expression of microRNAs (miRNAs) in STAM mice treated with or without ipragliflozin (16.7 μg/day for 5 weeks). Ipragliflozin reduced aspartate transaminase and alanine aminotransferase levels, along with reduced hepatic steatosis, hepatocyte ballooning, lobular inflammation, and liver fibrosis. In addition, ipragliflozin upregulated mitochondrial transport-related and antioxidant defensive system-related genes in the liver. Among 2555 mouse miRNA probes, miR-19b-3p was commonly differentially expressed with ipragliflozin treatment for 5 weeks in both the liver and serum but in different directions, with a decrease in the liver and increase in the serum. Therefore, ipragliflozin can improve NASH development likely through the antioxidative stress pathway and by regulating miR-19b-3p.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0261310