Loading…
The mitochondrial proteomic changes of rat hippocampus induced by 28-day simulated microgravity
A large number of aerospace practices have confirmed that the aerospace microgravity environment can lead to cognitive function decline. Mitochondria are the most important energy metabolism organelles, and some studies demonstrate that the areospace microgravity environment can cause mitochondrial...
Saved in:
Published in: | PloS one 2022-03, Vol.17 (3), p.e0265108-e0265108 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A large number of aerospace practices have confirmed that the aerospace microgravity environment can lead to cognitive function decline. Mitochondria are the most important energy metabolism organelles, and some studies demonstrate that the areospace microgravity environment can cause mitochondrial dysfunction. However, the relationships between cognitive function decline and mitochondrial dysfunction in the microgravity environment have not been elucidated. In this study, we simulated the microgravity environment in the Sprague-Dawley (SD) rats by -30° tail suspension for 28 days. We then investigated the changes of mitochondrial morphology and proteomics in the hippocampus. The electron microscopy results showed that the 28-day tail suspension increased the mitochondria number and size of rat hippocampal neuronal soma. Using TMT-based proteomics analysis, we identified 163 differentially expressed proteins (DEPs) between tail suspension and control samples, and among them, 128 proteins were upregulated and 35 proteins were downregulated. Functional and network analyses of the DEPs indicated that several of mitochondrial metabolic processes including the tricarboxylic acid (TCA) cycle were altered by simulating microgravity (SM). We verified 3 upregulated proteins, aconitate hydratase (ACO2), dihydrolipoamide S-succinyltransferase (DLST), and citrate synthase (CS), in the TCA cycle process by western blotting and confirmed their differential expressions between tail suspension and control samples. Taken together, our results demonstrate that 28-day tail suspension can cause changes in the morphology and metabolic function of hippocampus mitochondria, which might represent a mechanism of cognitive disorder caused by aerospace microgravity. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0265108 |