Loading…

Predicting willingness to be vaccinated for Covid-19: Evidence from New Zealand

Governments around the world are seeking to slow the spread of Covid-19 and reduce hospitalisations by encouraging mass vaccinations for Covid-19. The success of this policy depends on most of the population accepting the vaccine and then being vaccinated. Understanding and predicting the motivation...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-04, Vol.17 (4), p.e0266485
Main Authors: Kaine, Geoff, Wright, Vic, Greenhalgh, Suzie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-fe071a68b597aea2aa6ca5b49abda53acf25dba781f5f733fd288c8f5f93c6ee3
cites cdi_FETCH-LOGICAL-c692t-fe071a68b597aea2aa6ca5b49abda53acf25dba781f5f733fd288c8f5f93c6ee3
container_end_page
container_issue 4
container_start_page e0266485
container_title PloS one
container_volume 17
creator Kaine, Geoff
Wright, Vic
Greenhalgh, Suzie
description Governments around the world are seeking to slow the spread of Covid-19 and reduce hospitalisations by encouraging mass vaccinations for Covid-19. The success of this policy depends on most of the population accepting the vaccine and then being vaccinated. Understanding and predicting the motivation of individuals to be vaccinated is, therefore, critical in assessing the likely effectiveness of a mass vaccination programme in slowing the spread of the virus. In this paper we draw on the I3 Response Framework to understand and predict the willingness of New Zealanders to be vaccinated for Covid-19. The Framework differs from most studies predicting willingness to be vaccinated because it is based on the idea that the willingness to adopt a behaviour depends on both involvement (a measure of motivational strength) with the behaviour and attitudes towards the behaviour. We show that predictions of individuals' willingness to be vaccinated are improved using involvement and attitudes together, compared to attitudes alone. This result has important implications for the implementation of mass vaccination programmes for Covid-19.
doi_str_mv 10.1371/journal.pone.0266485
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2648291650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A699719765</galeid><doaj_id>oai_doaj_org_article_c65602f9b6b74a8da8db36246e47bf7b</doaj_id><sourcerecordid>A699719765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-fe071a68b597aea2aa6ca5b49abda53acf25dba781f5f733fd288c8f5f93c6ee3</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0RLbiWPvAmmqBlSaKOLrghvrxDluXaVxsZMO_j0uzaYG7QLFkj_ynNc5b94keUqyKWElebN2vW-hmW5di9OMcp6L4l5ySiSjE04zdv9ofZI8CmGdZQUTnD9MTljB5H53miw-eayt7my7TK9t08S5xRDSzqUVpjvQ2rbQYZ0a59OZ29l6QuR5ehkX2GpMjXeb9CNepz8QGmjrx8kDA03AJ8N8lnx7d_l19mFytXg_n11cTTSXtJsYzEoCXFSFLAGBAnANRZVLqGooGGhDi7qCUhBTmJIxU1MhtIgbyTRHZGfJ84PutnFBDV4ERaMLVBJeZJGYH4jawVptvd2A_60cWPX3wPmlAt9Z3aDSvOAZNbLiVZmDqOOoGKc5x7ysTFlFrbfDbX21wVpj23loRqLjN61dqaXbKSGFpIREgVeDgHc_ewyd2tigsYmWoesP3y2z2KOI6It_0Lu7G6glxAZsa1y8V-9F1QWXsiSy5EWkpndQ8alxY3UMjrHxfFTwelQQmQ5_dUvoQ1DzL5__n118H7Mvj9hVzEq3Cq7pO-vaMAbzA6i9C8GjuTWZZGqf-xs31D73ash9LHt2_INui26Czv4Aqnn9rw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648291650</pqid></control><display><type>article</type><title>Predicting willingness to be vaccinated for Covid-19: Evidence from New Zealand</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Kaine, Geoff ; Wright, Vic ; Greenhalgh, Suzie</creator><contributor>Brito-Costa, Sonia</contributor><creatorcontrib>Kaine, Geoff ; Wright, Vic ; Greenhalgh, Suzie ; Brito-Costa, Sonia</creatorcontrib><description>Governments around the world are seeking to slow the spread of Covid-19 and reduce hospitalisations by encouraging mass vaccinations for Covid-19. The success of this policy depends on most of the population accepting the vaccine and then being vaccinated. Understanding and predicting the motivation of individuals to be vaccinated is, therefore, critical in assessing the likely effectiveness of a mass vaccination programme in slowing the spread of the virus. In this paper we draw on the I3 Response Framework to understand and predict the willingness of New Zealanders to be vaccinated for Covid-19. The Framework differs from most studies predicting willingness to be vaccinated because it is based on the idea that the willingness to adopt a behaviour depends on both involvement (a measure of motivational strength) with the behaviour and attitudes towards the behaviour. We show that predictions of individuals' willingness to be vaccinated are improved using involvement and attitudes together, compared to attitudes alone. This result has important implications for the implementation of mass vaccination programmes for Covid-19.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0266485</identifier><identifier>PMID: 35390053</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Attitudes ; Biology and Life Sciences ; Computer and Information Sciences ; COVID-19 ; COVID-19 - epidemiology ; COVID-19 - prevention &amp; control ; COVID-19 vaccines ; COVID-19 Vaccines - therapeutic use ; Decision making ; Health behavior ; Humans ; Immunization ; Mass Vaccination ; Medicine and Health Sciences ; Motivation ; New Zealand - epidemiology ; People and places ; SARS-CoV-2 ; Social Sciences ; Vaccination ; Vaccines ; Viruses</subject><ispartof>PloS one, 2022-04, Vol.17 (4), p.e0266485</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Kaine et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Kaine et al 2022 Kaine et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-fe071a68b597aea2aa6ca5b49abda53acf25dba781f5f733fd288c8f5f93c6ee3</citedby><cites>FETCH-LOGICAL-c692t-fe071a68b597aea2aa6ca5b49abda53acf25dba781f5f733fd288c8f5f93c6ee3</cites><orcidid>0000-0001-6747-7434 ; 0000-0002-8284-3567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2648291650/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2648291650?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35390053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Brito-Costa, Sonia</contributor><creatorcontrib>Kaine, Geoff</creatorcontrib><creatorcontrib>Wright, Vic</creatorcontrib><creatorcontrib>Greenhalgh, Suzie</creatorcontrib><title>Predicting willingness to be vaccinated for Covid-19: Evidence from New Zealand</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Governments around the world are seeking to slow the spread of Covid-19 and reduce hospitalisations by encouraging mass vaccinations for Covid-19. The success of this policy depends on most of the population accepting the vaccine and then being vaccinated. Understanding and predicting the motivation of individuals to be vaccinated is, therefore, critical in assessing the likely effectiveness of a mass vaccination programme in slowing the spread of the virus. In this paper we draw on the I3 Response Framework to understand and predict the willingness of New Zealanders to be vaccinated for Covid-19. The Framework differs from most studies predicting willingness to be vaccinated because it is based on the idea that the willingness to adopt a behaviour depends on both involvement (a measure of motivational strength) with the behaviour and attitudes towards the behaviour. We show that predictions of individuals' willingness to be vaccinated are improved using involvement and attitudes together, compared to attitudes alone. This result has important implications for the implementation of mass vaccination programmes for Covid-19.</description><subject>Analysis</subject><subject>Attitudes</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - prevention &amp; control</subject><subject>COVID-19 vaccines</subject><subject>COVID-19 Vaccines - therapeutic use</subject><subject>Decision making</subject><subject>Health behavior</subject><subject>Humans</subject><subject>Immunization</subject><subject>Mass Vaccination</subject><subject>Medicine and Health Sciences</subject><subject>Motivation</subject><subject>New Zealand - epidemiology</subject><subject>People and places</subject><subject>SARS-CoV-2</subject><subject>Social Sciences</subject><subject>Vaccination</subject><subject>Vaccines</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0RLbiWPvAmmqBlSaKOLrghvrxDluXaVxsZMO_j0uzaYG7QLFkj_ynNc5b94keUqyKWElebN2vW-hmW5di9OMcp6L4l5ySiSjE04zdv9ofZI8CmGdZQUTnD9MTljB5H53miw-eayt7my7TK9t08S5xRDSzqUVpjvQ2rbQYZ0a59OZ29l6QuR5ehkX2GpMjXeb9CNepz8QGmjrx8kDA03AJ8N8lnx7d_l19mFytXg_n11cTTSXtJsYzEoCXFSFLAGBAnANRZVLqGooGGhDi7qCUhBTmJIxU1MhtIgbyTRHZGfJ84PutnFBDV4ERaMLVBJeZJGYH4jawVptvd2A_60cWPX3wPmlAt9Z3aDSvOAZNbLiVZmDqOOoGKc5x7ysTFlFrbfDbX21wVpj23loRqLjN61dqaXbKSGFpIREgVeDgHc_ewyd2tigsYmWoesP3y2z2KOI6It_0Lu7G6glxAZsa1y8V-9F1QWXsiSy5EWkpndQ8alxY3UMjrHxfFTwelQQmQ5_dUvoQ1DzL5__n118H7Mvj9hVzEq3Cq7pO-vaMAbzA6i9C8GjuTWZZGqf-xs31D73ash9LHt2_INui26Czv4Aqnn9rw</recordid><startdate>20220407</startdate><enddate>20220407</enddate><creator>Kaine, Geoff</creator><creator>Wright, Vic</creator><creator>Greenhalgh, Suzie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6747-7434</orcidid><orcidid>https://orcid.org/0000-0002-8284-3567</orcidid></search><sort><creationdate>20220407</creationdate><title>Predicting willingness to be vaccinated for Covid-19: Evidence from New Zealand</title><author>Kaine, Geoff ; Wright, Vic ; Greenhalgh, Suzie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-fe071a68b597aea2aa6ca5b49abda53acf25dba781f5f733fd288c8f5f93c6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Attitudes</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - prevention &amp; control</topic><topic>COVID-19 vaccines</topic><topic>COVID-19 Vaccines - therapeutic use</topic><topic>Decision making</topic><topic>Health behavior</topic><topic>Humans</topic><topic>Immunization</topic><topic>Mass Vaccination</topic><topic>Medicine and Health Sciences</topic><topic>Motivation</topic><topic>New Zealand - epidemiology</topic><topic>People and places</topic><topic>SARS-CoV-2</topic><topic>Social Sciences</topic><topic>Vaccination</topic><topic>Vaccines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaine, Geoff</creatorcontrib><creatorcontrib>Wright, Vic</creatorcontrib><creatorcontrib>Greenhalgh, Suzie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaine, Geoff</au><au>Wright, Vic</au><au>Greenhalgh, Suzie</au><au>Brito-Costa, Sonia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting willingness to be vaccinated for Covid-19: Evidence from New Zealand</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-04-07</date><risdate>2022</risdate><volume>17</volume><issue>4</issue><spage>e0266485</spage><pages>e0266485-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Governments around the world are seeking to slow the spread of Covid-19 and reduce hospitalisations by encouraging mass vaccinations for Covid-19. The success of this policy depends on most of the population accepting the vaccine and then being vaccinated. Understanding and predicting the motivation of individuals to be vaccinated is, therefore, critical in assessing the likely effectiveness of a mass vaccination programme in slowing the spread of the virus. In this paper we draw on the I3 Response Framework to understand and predict the willingness of New Zealanders to be vaccinated for Covid-19. The Framework differs from most studies predicting willingness to be vaccinated because it is based on the idea that the willingness to adopt a behaviour depends on both involvement (a measure of motivational strength) with the behaviour and attitudes towards the behaviour. We show that predictions of individuals' willingness to be vaccinated are improved using involvement and attitudes together, compared to attitudes alone. This result has important implications for the implementation of mass vaccination programmes for Covid-19.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35390053</pmid><doi>10.1371/journal.pone.0266485</doi><tpages>e0266485</tpages><orcidid>https://orcid.org/0000-0001-6747-7434</orcidid><orcidid>https://orcid.org/0000-0002-8284-3567</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-04, Vol.17 (4), p.e0266485
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2648291650
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Analysis
Attitudes
Biology and Life Sciences
Computer and Information Sciences
COVID-19
COVID-19 - epidemiology
COVID-19 - prevention & control
COVID-19 vaccines
COVID-19 Vaccines - therapeutic use
Decision making
Health behavior
Humans
Immunization
Mass Vaccination
Medicine and Health Sciences
Motivation
New Zealand - epidemiology
People and places
SARS-CoV-2
Social Sciences
Vaccination
Vaccines
Viruses
title Predicting willingness to be vaccinated for Covid-19: Evidence from New Zealand
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20willingness%20to%20be%20vaccinated%20for%20Covid-19:%20Evidence%20from%20New%20Zealand&rft.jtitle=PloS%20one&rft.au=Kaine,%20Geoff&rft.date=2022-04-07&rft.volume=17&rft.issue=4&rft.spage=e0266485&rft.pages=e0266485-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0266485&rft_dat=%3Cgale_plos_%3EA699719765%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-fe071a68b597aea2aa6ca5b49abda53acf25dba781f5f733fd288c8f5f93c6ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648291650&rft_id=info:pmid/35390053&rft_galeid=A699719765&rfr_iscdi=true