Loading…

An improved multi-view attention network inspired by coupled P system for node classification

Most of the existing graph embedding methods are used to describe the single view network and solve the single relation in the network. However, the real world is made up of networks with multiple views of complex relationships, and the existing methods can no longer meet the needs of people. To sol...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-04, Vol.17 (4), p.e0267565
Main Authors: Liu, Qian, Liu, Xiyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most of the existing graph embedding methods are used to describe the single view network and solve the single relation in the network. However, the real world is made up of networks with multiple views of complex relationships, and the existing methods can no longer meet the needs of people. To solve this problem, we propose a novel multi-view attention network inspired by coupled P system(MVAN-CP) to deal with node classification. More specifically, we design a multi-view attention network to extract abundant information from multiple views in the network and obtain a learning representation for each view. To enable the views to collaborate, we further apply attention mechanism to facilitate the view fusion process. Taking advantage of the maximum parallelism of P system, the process of learning and fusion will be realized in the coupled P system, which greatly improves the computational efficiency. Experiments on real network data sets indicate that our model is effective.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0267565