Loading…
An improved multi-view attention network inspired by coupled P system for node classification
Most of the existing graph embedding methods are used to describe the single view network and solve the single relation in the network. However, the real world is made up of networks with multiple views of complex relationships, and the existing methods can no longer meet the needs of people. To sol...
Saved in:
Published in: | PloS one 2022-04, Vol.17 (4), p.e0267565 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Most of the existing graph embedding methods are used to describe the single view network and solve the single relation in the network. However, the real world is made up of networks with multiple views of complex relationships, and the existing methods can no longer meet the needs of people. To solve this problem, we propose a novel multi-view attention network inspired by coupled P system(MVAN-CP) to deal with node classification. More specifically, we design a multi-view attention network to extract abundant information from multiple views in the network and obtain a learning representation for each view. To enable the views to collaborate, we further apply attention mechanism to facilitate the view fusion process. Taking advantage of the maximum parallelism of P system, the process of learning and fusion will be realized in the coupled P system, which greatly improves the computational efficiency. Experiments on real network data sets indicate that our model is effective. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0267565 |