Loading…

Evaluation of portable near-infrared spectroscopy for authentication of mRNA based COVID-19 vaccines

Since its identification in 2019, Covid-19 has spread to become a global pandemic. Until now, vaccination in its different forms proves to be the most effective measure to control the outbreak and lower the burden of the disease on healthcare systems. This arena has become a prime target to criminal...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-05, Vol.17 (5), p.e0267214-e0267214
Main Authors: Assi, Sulaf, Arafat, Basel, Abbas, Ismail, Evans, Kieran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since its identification in 2019, Covid-19 has spread to become a global pandemic. Until now, vaccination in its different forms proves to be the most effective measure to control the outbreak and lower the burden of the disease on healthcare systems. This arena has become a prime target to criminal networks that spread counterfeit Covid-19 vaccines across the supply chain mainly for profit. Counterfeit vaccines provide false sense of security to individuals, heightens the risk of exposure and outbreak of the virus, and increase the risk of harm linked to Covid-19 infection. Moreover, the increase in counterfeit vaccines feeds hesitancy towards vaccination and erodes the trust in mass immunisation programmes. It is therefore of paramount importance to work on rapid and reliable methods for vaccine authentication. Subsequently this work utilised a portable and non-destructive near infrared (NIR) spectroscopic method for authentication of Covid-19 vaccines. A total of 405 Covid-19 vaccines samples, alongside their main constituents, were measured as received through glass vials. Spectral quality and bands were inspected by considering the raw spectra of the vaccines. Authentication was explored by applying principal component analysis (PCA) to the multiplicative scatter correction-first derivative spectra. The results showed that NIR spectra of the vaccine featured mainly bands corresponding to the mRNA active ingredient. Fewer bands corresponded to the excipients and protein spectra. The vaccines NIR spectra were strongly absorbing with maximum absorbances up to 2.7 absorbance units and that differentiated them from samples containing normal saline only (constituent reported for counterfeit Covid-19 vaccines). Clustering based on PCA offered optimal authentication of Covid-19 vaccines when applied over the range of 9000-4000 cm-1These findings shed light on the potential of using NIR for analysing Covid-19 vaccines and presents a rapid and effective initial technique for Covid-19 vaccine authentication.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0267214