Loading…

Integrated model for Food-Energy-Water (FEW) nexus to study global sustainability: The water compartments and water stress analysis

Analysis of global sustainability is incomplete without an examination of the FEW nexus. Here, we modify the Generalized Global Sustainability Model (GGSM) to incorporate the global water system and project water stress on the global and regional levels. Five key water-consuming sectors considered h...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-05, Vol.17 (5), p.e0266554-e0266554
Main Authors: Hanumante, Neeraj, Shastri, Yogendra, Nisal, Apoorva, Diwekar, Urmila, Cabezas, Heriberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analysis of global sustainability is incomplete without an examination of the FEW nexus. Here, we modify the Generalized Global Sustainability Model (GGSM) to incorporate the global water system and project water stress on the global and regional levels. Five key water-consuming sectors considered here are agricultural, municipal, energy, industry, and livestock. The regions are created based on the continents, namely, Africa, Asia, Europe, North America, Oceania, and South America. The sectoral water use intensities and geographical distribution of the water demand were parameterized using historical data. A more realistic and novel indicator is proposed to assess the water situation: net water stress. It considers the water whose utility can be harvested, within economic and technological considerations, rather than the total renewable water resources. Simulation results indicate that overall global water availability is adequate to support the rising water demand in the next century. However, regional heterogeneity of water availability leads to high water stress in Africa. Africa's maximum net water stress is 140%, so the water demand is expected to be more than total exploitable water resources. Africa might soon cross the 100% threshold/breakeven in 2022. For a population explosion scenario, the intensity of the water crisis for Africa and Asia is expected to rise further, and the maximum net water stress would reach 149% and 97%, respectively. The water use efficiency improvement for the agricultural sector, which reduces the water demand by 30%, could help to delay this crisis significantly.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0266554