Loading…

A leaf reflectance-based crop yield modeling in Northwest Ethiopia

Crop yield prediction provides information to policymakers in the agricultural production system. This study used leaf reflectance from a spectroradiometer to model grain yield (GY) and aboveground biomass yield (ABY) of maize (Zea mays L.) at Aba Gerima catchment, Ethiopia. A FieldSpec IV (350-2,50...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-06, Vol.17 (6), p.e0269791-e0269791
Main Authors: Tiruneh, Gizachew Ayalew, Meshesha, Derege Tsegaye, Adgo, Enyew, Tsunekawa, Atsushi, Haregeweyn, Nigussie, Fenta, Ayele Almaw, Reichert, José Miguel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-da4d296c720017a492af0325aafb1fb491e9303983ef1889459ff73bdedad3003
cites cdi_FETCH-LOGICAL-c692t-da4d296c720017a492af0325aafb1fb491e9303983ef1889459ff73bdedad3003
container_end_page e0269791
container_issue 6
container_start_page e0269791
container_title PloS one
container_volume 17
creator Tiruneh, Gizachew Ayalew
Meshesha, Derege Tsegaye
Adgo, Enyew
Tsunekawa, Atsushi
Haregeweyn, Nigussie
Fenta, Ayele Almaw
Reichert, José Miguel
description Crop yield prediction provides information to policymakers in the agricultural production system. This study used leaf reflectance from a spectroradiometer to model grain yield (GY) and aboveground biomass yield (ABY) of maize (Zea mays L.) at Aba Gerima catchment, Ethiopia. A FieldSpec IV (350-2,500 nm wavelengths) spectroradiometer was used to estimate the spectral reflectance of crop leaves during the grain-filling phase. The spectral vegetation indices, such as enhanced vegetation index (EVI), normalized difference VI (NDVI), green NDVI (GNDVI), soil adjusted VI, red NDVI, and simple ratio were deduced from the spectral reflectance. We used regression analyses to identify and predict GY and ABY at the catchment level. The coefficient of determination (R2), the root mean square error (RMSE), and relative importance (RI) were used for evaluating model performance. The findings revealed that the best-fitting curve was obtained between GY and NDVI (R2 = 0.70; RMSE = 0.065; P < 0.0001; RI = 0.19), followed by EVI (R2 = 0.65; RMSE = 0.024; RI = 0.61; P < 0.0001). While the best-fitting curve was obtained between ABY and GNDVI (R2 = 0.71; RI = 0.24; P < 0.0001), followed by NDVI (R2 = 0.77; RI = 0.17; P < 0.0001). The highest GY (7.18 ton/ha) and ABY (18.71 ton/ha) of maize were recorded at a soil bunded plot on a gentle slope. Combined spectral indices were also employed to predict GY with R2 (0.83) and RMSE (0.24) and ABY with R2 (0.78) and RMSE (0.12). Thus, the maize's GY and ABY can be predicted with acceptable accuracy using spectral reflectance indices derived from spectroradiometer in an area like the Aba Gerima catchment. An estimation model of crop yields could help policy-makers in identifying yield-limiting factors and achieve decisive actions to get better crop yields and food security for Ethiopia.
doi_str_mv 10.1371/journal.pone.0269791
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2686270062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707329705</galeid><doaj_id>oai_doaj_org_article_45a80355acba4f51ac05b4d1e02f75f2</doaj_id><sourcerecordid>A707329705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-da4d296c720017a492af0325aafb1fb491e9303983ef1889459ff73bdedad3003</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYqPwDxBEQkJw0eKPOI5vkMo0RqWJSXzdWif-aF25cYkTYP8eZ82mBu0C-cLW8XPe43P8ZtlzjBaYcvxuG_q2Ab_Yh8YsECkFF_hBdooFJfOSIPrw6HySPYlxixCjVVk-zk4o40hgUZ5mH5a5N2Dz1lhvVAeNMvMaotG5asM-v3bG63wXtPGuWeeuyT-Httv8NrHLz7uNC3sHT7NHFnw0z8Z9ln3_eP7t7NP88upidba8nKtSkG6uodBElIoThDCHQhCwiBIGYGts60JgIyiioqLG4qoSBRPWclpro0FThOgse3nQ3fsQ5dh-lKSsSsIRKkkiVgdCB9jKfet20F7LAE7eBEK7ltB2TnkjCwYVooyBqqGwDINCrC40NohYzuyg9X6s1tc7o5Vpuhb8RHR607iNXIdfUhBEqrJIAm9GgTb87NPA5M5FZbyHxoR-eDfnjBNWDbVe_YPe391IrSE14BobUl01iMolR5wSwdMHz7LFPVRa2uycSl6xLsUnCW8nCYnpzJ9uDX2McvX1y_-zVz-m7OsjdmPAd5sYfN-50MQpWBzA5LgYkxHvhoyRHKx-Ow05WF2OVk9pL44_6C7p1tv0L6h895A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686270062</pqid></control><display><type>article</type><title>A leaf reflectance-based crop yield modeling in Northwest Ethiopia</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Tiruneh, Gizachew Ayalew ; Meshesha, Derege Tsegaye ; Adgo, Enyew ; Tsunekawa, Atsushi ; Haregeweyn, Nigussie ; Fenta, Ayele Almaw ; Reichert, José Miguel</creator><contributor>Chemura, Abel</contributor><creatorcontrib>Tiruneh, Gizachew Ayalew ; Meshesha, Derege Tsegaye ; Adgo, Enyew ; Tsunekawa, Atsushi ; Haregeweyn, Nigussie ; Fenta, Ayele Almaw ; Reichert, José Miguel ; Chemura, Abel</creatorcontrib><description>Crop yield prediction provides information to policymakers in the agricultural production system. This study used leaf reflectance from a spectroradiometer to model grain yield (GY) and aboveground biomass yield (ABY) of maize (Zea mays L.) at Aba Gerima catchment, Ethiopia. A FieldSpec IV (350-2,500 nm wavelengths) spectroradiometer was used to estimate the spectral reflectance of crop leaves during the grain-filling phase. The spectral vegetation indices, such as enhanced vegetation index (EVI), normalized difference VI (NDVI), green NDVI (GNDVI), soil adjusted VI, red NDVI, and simple ratio were deduced from the spectral reflectance. We used regression analyses to identify and predict GY and ABY at the catchment level. The coefficient of determination (R2), the root mean square error (RMSE), and relative importance (RI) were used for evaluating model performance. The findings revealed that the best-fitting curve was obtained between GY and NDVI (R2 = 0.70; RMSE = 0.065; P &lt; 0.0001; RI = 0.19), followed by EVI (R2 = 0.65; RMSE = 0.024; RI = 0.61; P &lt; 0.0001). While the best-fitting curve was obtained between ABY and GNDVI (R2 = 0.71; RI = 0.24; P &lt; 0.0001), followed by NDVI (R2 = 0.77; RI = 0.17; P &lt; 0.0001). The highest GY (7.18 ton/ha) and ABY (18.71 ton/ha) of maize were recorded at a soil bunded plot on a gentle slope. Combined spectral indices were also employed to predict GY with R2 (0.83) and RMSE (0.24) and ABY with R2 (0.78) and RMSE (0.12). Thus, the maize's GY and ABY can be predicted with acceptable accuracy using spectral reflectance indices derived from spectroradiometer in an area like the Aba Gerima catchment. An estimation model of crop yields could help policy-makers in identifying yield-limiting factors and achieve decisive actions to get better crop yields and food security for Ethiopia.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0269791</identifier><identifier>PMID: 35709196</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural estimating and reporting ; Agricultural production ; Agricultural research ; Agriculture ; Biology and Life Sciences ; Catchments ; Corn ; Crop yield ; Crop yields ; Crops ; Curve fitting ; Earth Sciences ; Economic aspects ; Fertilizers ; Flow velocity ; Food ; Food security ; Food supply ; Grain ; Leaves ; Modelling ; Moisture content ; People and Places ; Production processes ; Productivity ; Reflectance ; Regression analysis ; Remote sensing ; Research and Analysis Methods ; Root-mean-square errors ; Soils ; Spectral reflectance ; Spectroradiometers ; Statistical analysis ; Vegetation ; Vegetation index ; Wavelengths ; Zea mays</subject><ispartof>PloS one, 2022-06, Vol.17 (6), p.e0269791-e0269791</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Tiruneh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Tiruneh et al 2022 Tiruneh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-da4d296c720017a492af0325aafb1fb491e9303983ef1889459ff73bdedad3003</citedby><cites>FETCH-LOGICAL-c692t-da4d296c720017a492af0325aafb1fb491e9303983ef1889459ff73bdedad3003</cites><orcidid>0000-0002-7690-0633 ; 0000-0001-6824-5037 ; 0000-0001-9943-2898 ; 0000-0001-9374-8138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2686270062/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2686270062?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35709196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chemura, Abel</contributor><creatorcontrib>Tiruneh, Gizachew Ayalew</creatorcontrib><creatorcontrib>Meshesha, Derege Tsegaye</creatorcontrib><creatorcontrib>Adgo, Enyew</creatorcontrib><creatorcontrib>Tsunekawa, Atsushi</creatorcontrib><creatorcontrib>Haregeweyn, Nigussie</creatorcontrib><creatorcontrib>Fenta, Ayele Almaw</creatorcontrib><creatorcontrib>Reichert, José Miguel</creatorcontrib><title>A leaf reflectance-based crop yield modeling in Northwest Ethiopia</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Crop yield prediction provides information to policymakers in the agricultural production system. This study used leaf reflectance from a spectroradiometer to model grain yield (GY) and aboveground biomass yield (ABY) of maize (Zea mays L.) at Aba Gerima catchment, Ethiopia. A FieldSpec IV (350-2,500 nm wavelengths) spectroradiometer was used to estimate the spectral reflectance of crop leaves during the grain-filling phase. The spectral vegetation indices, such as enhanced vegetation index (EVI), normalized difference VI (NDVI), green NDVI (GNDVI), soil adjusted VI, red NDVI, and simple ratio were deduced from the spectral reflectance. We used regression analyses to identify and predict GY and ABY at the catchment level. The coefficient of determination (R2), the root mean square error (RMSE), and relative importance (RI) were used for evaluating model performance. The findings revealed that the best-fitting curve was obtained between GY and NDVI (R2 = 0.70; RMSE = 0.065; P &lt; 0.0001; RI = 0.19), followed by EVI (R2 = 0.65; RMSE = 0.024; RI = 0.61; P &lt; 0.0001). While the best-fitting curve was obtained between ABY and GNDVI (R2 = 0.71; RI = 0.24; P &lt; 0.0001), followed by NDVI (R2 = 0.77; RI = 0.17; P &lt; 0.0001). The highest GY (7.18 ton/ha) and ABY (18.71 ton/ha) of maize were recorded at a soil bunded plot on a gentle slope. Combined spectral indices were also employed to predict GY with R2 (0.83) and RMSE (0.24) and ABY with R2 (0.78) and RMSE (0.12). Thus, the maize's GY and ABY can be predicted with acceptable accuracy using spectral reflectance indices derived from spectroradiometer in an area like the Aba Gerima catchment. An estimation model of crop yields could help policy-makers in identifying yield-limiting factors and achieve decisive actions to get better crop yields and food security for Ethiopia.</description><subject>Agricultural estimating and reporting</subject><subject>Agricultural production</subject><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Biology and Life Sciences</subject><subject>Catchments</subject><subject>Corn</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Curve fitting</subject><subject>Earth Sciences</subject><subject>Economic aspects</subject><subject>Fertilizers</subject><subject>Flow velocity</subject><subject>Food</subject><subject>Food security</subject><subject>Food supply</subject><subject>Grain</subject><subject>Leaves</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>People and Places</subject><subject>Production processes</subject><subject>Productivity</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Research and Analysis Methods</subject><subject>Root-mean-square errors</subject><subject>Soils</subject><subject>Spectral reflectance</subject><subject>Spectroradiometers</subject><subject>Statistical analysis</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Wavelengths</subject><subject>Zea mays</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYqPwDxBEQkJw0eKPOI5vkMo0RqWJSXzdWif-aF25cYkTYP8eZ82mBu0C-cLW8XPe43P8ZtlzjBaYcvxuG_q2Ab_Yh8YsECkFF_hBdooFJfOSIPrw6HySPYlxixCjVVk-zk4o40hgUZ5mH5a5N2Dz1lhvVAeNMvMaotG5asM-v3bG63wXtPGuWeeuyT-Httv8NrHLz7uNC3sHT7NHFnw0z8Z9ln3_eP7t7NP88upidba8nKtSkG6uodBElIoThDCHQhCwiBIGYGts60JgIyiioqLG4qoSBRPWclpro0FThOgse3nQ3fsQ5dh-lKSsSsIRKkkiVgdCB9jKfet20F7LAE7eBEK7ltB2TnkjCwYVooyBqqGwDINCrC40NohYzuyg9X6s1tc7o5Vpuhb8RHR607iNXIdfUhBEqrJIAm9GgTb87NPA5M5FZbyHxoR-eDfnjBNWDbVe_YPe391IrSE14BobUl01iMolR5wSwdMHz7LFPVRa2uycSl6xLsUnCW8nCYnpzJ9uDX2McvX1y_-zVz-m7OsjdmPAd5sYfN-50MQpWBzA5LgYkxHvhoyRHKx-Ow05WF2OVk9pL44_6C7p1tv0L6h895A</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Tiruneh, Gizachew Ayalew</creator><creator>Meshesha, Derege Tsegaye</creator><creator>Adgo, Enyew</creator><creator>Tsunekawa, Atsushi</creator><creator>Haregeweyn, Nigussie</creator><creator>Fenta, Ayele Almaw</creator><creator>Reichert, José Miguel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7690-0633</orcidid><orcidid>https://orcid.org/0000-0001-6824-5037</orcidid><orcidid>https://orcid.org/0000-0001-9943-2898</orcidid><orcidid>https://orcid.org/0000-0001-9374-8138</orcidid></search><sort><creationdate>20220616</creationdate><title>A leaf reflectance-based crop yield modeling in Northwest Ethiopia</title><author>Tiruneh, Gizachew Ayalew ; Meshesha, Derege Tsegaye ; Adgo, Enyew ; Tsunekawa, Atsushi ; Haregeweyn, Nigussie ; Fenta, Ayele Almaw ; Reichert, José Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-da4d296c720017a492af0325aafb1fb491e9303983ef1889459ff73bdedad3003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural estimating and reporting</topic><topic>Agricultural production</topic><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Biology and Life Sciences</topic><topic>Catchments</topic><topic>Corn</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Curve fitting</topic><topic>Earth Sciences</topic><topic>Economic aspects</topic><topic>Fertilizers</topic><topic>Flow velocity</topic><topic>Food</topic><topic>Food security</topic><topic>Food supply</topic><topic>Grain</topic><topic>Leaves</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>People and Places</topic><topic>Production processes</topic><topic>Productivity</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Research and Analysis Methods</topic><topic>Root-mean-square errors</topic><topic>Soils</topic><topic>Spectral reflectance</topic><topic>Spectroradiometers</topic><topic>Statistical analysis</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Wavelengths</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiruneh, Gizachew Ayalew</creatorcontrib><creatorcontrib>Meshesha, Derege Tsegaye</creatorcontrib><creatorcontrib>Adgo, Enyew</creatorcontrib><creatorcontrib>Tsunekawa, Atsushi</creatorcontrib><creatorcontrib>Haregeweyn, Nigussie</creatorcontrib><creatorcontrib>Fenta, Ayele Almaw</creatorcontrib><creatorcontrib>Reichert, José Miguel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiruneh, Gizachew Ayalew</au><au>Meshesha, Derege Tsegaye</au><au>Adgo, Enyew</au><au>Tsunekawa, Atsushi</au><au>Haregeweyn, Nigussie</au><au>Fenta, Ayele Almaw</au><au>Reichert, José Miguel</au><au>Chemura, Abel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A leaf reflectance-based crop yield modeling in Northwest Ethiopia</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-06-16</date><risdate>2022</risdate><volume>17</volume><issue>6</issue><spage>e0269791</spage><epage>e0269791</epage><pages>e0269791-e0269791</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Crop yield prediction provides information to policymakers in the agricultural production system. This study used leaf reflectance from a spectroradiometer to model grain yield (GY) and aboveground biomass yield (ABY) of maize (Zea mays L.) at Aba Gerima catchment, Ethiopia. A FieldSpec IV (350-2,500 nm wavelengths) spectroradiometer was used to estimate the spectral reflectance of crop leaves during the grain-filling phase. The spectral vegetation indices, such as enhanced vegetation index (EVI), normalized difference VI (NDVI), green NDVI (GNDVI), soil adjusted VI, red NDVI, and simple ratio were deduced from the spectral reflectance. We used regression analyses to identify and predict GY and ABY at the catchment level. The coefficient of determination (R2), the root mean square error (RMSE), and relative importance (RI) were used for evaluating model performance. The findings revealed that the best-fitting curve was obtained between GY and NDVI (R2 = 0.70; RMSE = 0.065; P &lt; 0.0001; RI = 0.19), followed by EVI (R2 = 0.65; RMSE = 0.024; RI = 0.61; P &lt; 0.0001). While the best-fitting curve was obtained between ABY and GNDVI (R2 = 0.71; RI = 0.24; P &lt; 0.0001), followed by NDVI (R2 = 0.77; RI = 0.17; P &lt; 0.0001). The highest GY (7.18 ton/ha) and ABY (18.71 ton/ha) of maize were recorded at a soil bunded plot on a gentle slope. Combined spectral indices were also employed to predict GY with R2 (0.83) and RMSE (0.24) and ABY with R2 (0.78) and RMSE (0.12). Thus, the maize's GY and ABY can be predicted with acceptable accuracy using spectral reflectance indices derived from spectroradiometer in an area like the Aba Gerima catchment. An estimation model of crop yields could help policy-makers in identifying yield-limiting factors and achieve decisive actions to get better crop yields and food security for Ethiopia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35709196</pmid><doi>10.1371/journal.pone.0269791</doi><tpages>e0269791</tpages><orcidid>https://orcid.org/0000-0002-7690-0633</orcidid><orcidid>https://orcid.org/0000-0001-6824-5037</orcidid><orcidid>https://orcid.org/0000-0001-9943-2898</orcidid><orcidid>https://orcid.org/0000-0001-9374-8138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-06, Vol.17 (6), p.e0269791-e0269791
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2686270062
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Agricultural estimating and reporting
Agricultural production
Agricultural research
Agriculture
Biology and Life Sciences
Catchments
Corn
Crop yield
Crop yields
Crops
Curve fitting
Earth Sciences
Economic aspects
Fertilizers
Flow velocity
Food
Food security
Food supply
Grain
Leaves
Modelling
Moisture content
People and Places
Production processes
Productivity
Reflectance
Regression analysis
Remote sensing
Research and Analysis Methods
Root-mean-square errors
Soils
Spectral reflectance
Spectroradiometers
Statistical analysis
Vegetation
Vegetation index
Wavelengths
Zea mays
title A leaf reflectance-based crop yield modeling in Northwest Ethiopia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20leaf%20reflectance-based%20crop%20yield%20modeling%20in%20Northwest%20Ethiopia&rft.jtitle=PloS%20one&rft.au=Tiruneh,%20Gizachew%20Ayalew&rft.date=2022-06-16&rft.volume=17&rft.issue=6&rft.spage=e0269791&rft.epage=e0269791&rft.pages=e0269791-e0269791&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0269791&rft_dat=%3Cgale_plos_%3EA707329705%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-da4d296c720017a492af0325aafb1fb491e9303983ef1889459ff73bdedad3003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686270062&rft_id=info:pmid/35709196&rft_galeid=A707329705&rfr_iscdi=true