Loading…
Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice
Sickle cell disease (SCD) is an inherited blood disorder caused by a mutation in the HBB gene leading to hemoglobin S production and polymerization under hypoxia conditions leading to vaso-occlusion, chronic hemolysis, and progressive organ damage. This disease affects ~100,000 people in the United...
Saved in:
Published in: | PloS one 2022-05, Vol.17 (5), p.e0261799-e0261799 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-461c6a12e2774f59084968a8841079ecf5e96dfe92c8c6ea2266e12adcbd44343 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-461c6a12e2774f59084968a8841079ecf5e96dfe92c8c6ea2266e12adcbd44343 |
container_end_page | e0261799 |
container_issue | 5 |
container_start_page | e0261799 |
container_title | PloS one |
container_volume | 17 |
creator | Lopez, Nicole H Li, Biaoru Palani, Chithra Siddaramappa, Umapathy Takezaki, Mayuko Xu, Hongyan Zhi, Wenbo Pace, Betty S |
description | Sickle cell disease (SCD) is an inherited blood disorder caused by a mutation in the HBB gene leading to hemoglobin S production and polymerization under hypoxia conditions leading to vaso-occlusion, chronic hemolysis, and progressive organ damage. This disease affects ~100,000 people in the United States and millions worldwide. An effective therapy for SCD is fetal hemoglobin (HbF) induction by pharmacologic agents such as hydroxyurea, the only Food and Drug Administration-approved drug for this purpose. Therefore, the goal of our study was to determine whether salubrinal (SAL), a selective protein phosphatase 1 inhibitor, induces HbF expression through the stress-signaling pathway by activation of p-eIF2α and ATF4 trans-activation in the γ-globin gene promoter. Sickle erythroid progenitors treated with 24μM SAL increased F-cells levels 1.4-fold (p = 0.021) and produced an 80% decrease in reactive oxygen species. Western blot analysis showed SAL enhanced HbF protein by 1.6-fold (p = 0.0441), along with dose-dependent increases of p-eIF2α and ATF4 levels. Subsequent treatment of SCD mice by a single intraperitoneal injection of SAL (5mg/kg) produced peak plasma concentrations at 6 hours. Chronic treatments of SCD mice with SAL mediated a 2.3-fold increase in F-cells (p = 0.0013) and decreased sickle erythrocytes supporting in vivo HbF induction. |
doi_str_mv | 10.1371/journal.pone.0261799 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2687689723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A705554037</galeid><doaj_id>oai_doaj_org_article_b6d0733c35394634bf5ff8a63dc4d62a</doaj_id><sourcerecordid>A705554037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-461c6a12e2774f59084968a8841079ecf5e96dfe92c8c6ea2266e12adcbd44343</originalsourceid><addsrcrecordid>eNqNk89u1DAQxiMEoqXwBggsISE47BLbiRNfkKqKPytVqkSBq-XYk8Qla6e2U7qvwRPj7e5Wu6gHlEPiye_7PDP2ZNlLnM8xrfCHKzd5K4f56CzMc8Jwxfmj7BhzSmaM5PTx3vdR9iyEqzwvac3Y0-yIlozyqsbH2Z9LOUyNN8kJGasnBQG1ENOqh6XrBtcYi-B29BCCcRbdGIliDyjEdWQWTJeUxnZolLH_LVfJBPXTUloUjPo1AAK_ir13RqPRuw6sic4HJK3eAQqGAWkTQAZAS6PgefaklUOAF9v3Sfbj86fvZ19n5xdfFmen5zPFOImzgmHFJCZAqqpoS57XBWe1rOsC5xUH1ZbAmW6BE1UrBpIQxgATqVWji4IW9CR7vfEdBxfEtp1BEFZXrOYVoYlYbAjt5JUYvVlKvxJOGnEXcL4T0kejBhAN03lFqaIl5QWjRdOWbVtLRrUqNCMyeX3c7jY1S9AKbPRyODA9_GNNLzp3IzguU0U4GbzbGnh3PUGIYmnCunnSgpvWeaeU75JP6Jt_0Ier21KdTAUY27q0r1qbitMqL8uyyGmVqPkDVHo0pMNKd681KX4geH8gSEyE29jJKQSxuPz2_-zFz0P27R7bgxxiH9wwxXQtwyFYbEDlXQge2vsm41ysR2fXDbEeHbEdnSR7tX9A96LdrNC_xhQWvA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687689723</pqid></control><display><type>article</type><title>Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lopez, Nicole H ; Li, Biaoru ; Palani, Chithra ; Siddaramappa, Umapathy ; Takezaki, Mayuko ; Xu, Hongyan ; Zhi, Wenbo ; Pace, Betty S</creator><contributor>Grosso, Michela</contributor><creatorcontrib>Lopez, Nicole H ; Li, Biaoru ; Palani, Chithra ; Siddaramappa, Umapathy ; Takezaki, Mayuko ; Xu, Hongyan ; Zhi, Wenbo ; Pace, Betty S ; Grosso, Michela</creatorcontrib><description>Sickle cell disease (SCD) is an inherited blood disorder caused by a mutation in the HBB gene leading to hemoglobin S production and polymerization under hypoxia conditions leading to vaso-occlusion, chronic hemolysis, and progressive organ damage. This disease affects ~100,000 people in the United States and millions worldwide. An effective therapy for SCD is fetal hemoglobin (HbF) induction by pharmacologic agents such as hydroxyurea, the only Food and Drug Administration-approved drug for this purpose. Therefore, the goal of our study was to determine whether salubrinal (SAL), a selective protein phosphatase 1 inhibitor, induces HbF expression through the stress-signaling pathway by activation of p-eIF2α and ATF4 trans-activation in the γ-globin gene promoter. Sickle erythroid progenitors treated with 24μM SAL increased F-cells levels 1.4-fold (p = 0.021) and produced an 80% decrease in reactive oxygen species. Western blot analysis showed SAL enhanced HbF protein by 1.6-fold (p = 0.0441), along with dose-dependent increases of p-eIF2α and ATF4 levels. Subsequent treatment of SCD mice by a single intraperitoneal injection of SAL (5mg/kg) produced peak plasma concentrations at 6 hours. Chronic treatments of SCD mice with SAL mediated a 2.3-fold increase in F-cells (p = 0.0013) and decreased sickle erythrocytes supporting in vivo HbF induction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0261799</identifier><identifier>PMID: 35639781</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Anemia ; Anemia, Sickle Cell ; Animals ; Antibodies ; Binding sites ; Biology and Life Sciences ; Biotechnology ; Care and treatment ; Cinnamates - pharmacology ; Cinnamates - therapeutic use ; Diagnosis ; Drug dosages ; Erythrocytes ; Eukaryotic Initiation Factor-2 - metabolism ; FDA approval ; Fetal Hemoglobin - metabolism ; Fetuses ; Flow cytometry ; Gene expression ; HBB gene ; Hemoglobin ; Hemoglobin S ; Humans ; Hydroxyurea ; Hypoxia ; Medicine and Health Sciences ; Mice ; Mutation ; Occlusion ; Oxidative stress ; Oxygen ; Phosphoprotein phosphatase ; Progenitor cells ; Protein folding ; Protein phosphatase ; Proteins ; Reactive oxygen species ; Research and Analysis Methods ; RNA polymerase ; Sickle cell anemia ; Sickle cell disease ; Signal Transduction ; Signaling ; Thiourea - analogs & derivatives ; Transgenic animals</subject><ispartof>PloS one, 2022-05, Vol.17 (5), p.e0261799-e0261799</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Lopez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Lopez et al 2022 Lopez et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-461c6a12e2774f59084968a8841079ecf5e96dfe92c8c6ea2266e12adcbd44343</citedby><cites>FETCH-LOGICAL-c692t-461c6a12e2774f59084968a8841079ecf5e96dfe92c8c6ea2266e12adcbd44343</cites><orcidid>0000-0002-1275-4112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2687689723/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2687689723?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25740,27911,27912,36999,37000,44577,53778,53780,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35639781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Grosso, Michela</contributor><creatorcontrib>Lopez, Nicole H</creatorcontrib><creatorcontrib>Li, Biaoru</creatorcontrib><creatorcontrib>Palani, Chithra</creatorcontrib><creatorcontrib>Siddaramappa, Umapathy</creatorcontrib><creatorcontrib>Takezaki, Mayuko</creatorcontrib><creatorcontrib>Xu, Hongyan</creatorcontrib><creatorcontrib>Zhi, Wenbo</creatorcontrib><creatorcontrib>Pace, Betty S</creatorcontrib><title>Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sickle cell disease (SCD) is an inherited blood disorder caused by a mutation in the HBB gene leading to hemoglobin S production and polymerization under hypoxia conditions leading to vaso-occlusion, chronic hemolysis, and progressive organ damage. This disease affects ~100,000 people in the United States and millions worldwide. An effective therapy for SCD is fetal hemoglobin (HbF) induction by pharmacologic agents such as hydroxyurea, the only Food and Drug Administration-approved drug for this purpose. Therefore, the goal of our study was to determine whether salubrinal (SAL), a selective protein phosphatase 1 inhibitor, induces HbF expression through the stress-signaling pathway by activation of p-eIF2α and ATF4 trans-activation in the γ-globin gene promoter. Sickle erythroid progenitors treated with 24μM SAL increased F-cells levels 1.4-fold (p = 0.021) and produced an 80% decrease in reactive oxygen species. Western blot analysis showed SAL enhanced HbF protein by 1.6-fold (p = 0.0441), along with dose-dependent increases of p-eIF2α and ATF4 levels. Subsequent treatment of SCD mice by a single intraperitoneal injection of SAL (5mg/kg) produced peak plasma concentrations at 6 hours. Chronic treatments of SCD mice with SAL mediated a 2.3-fold increase in F-cells (p = 0.0013) and decreased sickle erythrocytes supporting in vivo HbF induction.</description><subject>Analysis</subject><subject>Anemia</subject><subject>Anemia, Sickle Cell</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Care and treatment</subject><subject>Cinnamates - pharmacology</subject><subject>Cinnamates - therapeutic use</subject><subject>Diagnosis</subject><subject>Drug dosages</subject><subject>Erythrocytes</subject><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>FDA approval</subject><subject>Fetal Hemoglobin - metabolism</subject><subject>Fetuses</subject><subject>Flow cytometry</subject><subject>Gene expression</subject><subject>HBB gene</subject><subject>Hemoglobin</subject><subject>Hemoglobin S</subject><subject>Humans</subject><subject>Hydroxyurea</subject><subject>Hypoxia</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mutation</subject><subject>Occlusion</subject><subject>Oxidative stress</subject><subject>Oxygen</subject><subject>Phosphoprotein phosphatase</subject><subject>Progenitor cells</subject><subject>Protein folding</subject><subject>Protein phosphatase</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Research and Analysis Methods</subject><subject>RNA polymerase</subject><subject>Sickle cell anemia</subject><subject>Sickle cell disease</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Thiourea - analogs & derivatives</subject><subject>Transgenic animals</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk89u1DAQxiMEoqXwBggsISE47BLbiRNfkKqKPytVqkSBq-XYk8Qla6e2U7qvwRPj7e5Wu6gHlEPiye_7PDP2ZNlLnM8xrfCHKzd5K4f56CzMc8Jwxfmj7BhzSmaM5PTx3vdR9iyEqzwvac3Y0-yIlozyqsbH2Z9LOUyNN8kJGasnBQG1ENOqh6XrBtcYi-B29BCCcRbdGIliDyjEdWQWTJeUxnZolLH_LVfJBPXTUloUjPo1AAK_ir13RqPRuw6sic4HJK3eAQqGAWkTQAZAS6PgefaklUOAF9v3Sfbj86fvZ19n5xdfFmen5zPFOImzgmHFJCZAqqpoS57XBWe1rOsC5xUH1ZbAmW6BE1UrBpIQxgATqVWji4IW9CR7vfEdBxfEtp1BEFZXrOYVoYlYbAjt5JUYvVlKvxJOGnEXcL4T0kejBhAN03lFqaIl5QWjRdOWbVtLRrUqNCMyeX3c7jY1S9AKbPRyODA9_GNNLzp3IzguU0U4GbzbGnh3PUGIYmnCunnSgpvWeaeU75JP6Jt_0Ier21KdTAUY27q0r1qbitMqL8uyyGmVqPkDVHo0pMNKd681KX4geH8gSEyE29jJKQSxuPz2_-zFz0P27R7bgxxiH9wwxXQtwyFYbEDlXQge2vsm41ysR2fXDbEeHbEdnSR7tX9A96LdrNC_xhQWvA</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Lopez, Nicole H</creator><creator>Li, Biaoru</creator><creator>Palani, Chithra</creator><creator>Siddaramappa, Umapathy</creator><creator>Takezaki, Mayuko</creator><creator>Xu, Hongyan</creator><creator>Zhi, Wenbo</creator><creator>Pace, Betty S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1275-4112</orcidid></search><sort><creationdate>20220531</creationdate><title>Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice</title><author>Lopez, Nicole H ; Li, Biaoru ; Palani, Chithra ; Siddaramappa, Umapathy ; Takezaki, Mayuko ; Xu, Hongyan ; Zhi, Wenbo ; Pace, Betty S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-461c6a12e2774f59084968a8841079ecf5e96dfe92c8c6ea2266e12adcbd44343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Anemia</topic><topic>Anemia, Sickle Cell</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Care and treatment</topic><topic>Cinnamates - pharmacology</topic><topic>Cinnamates - therapeutic use</topic><topic>Diagnosis</topic><topic>Drug dosages</topic><topic>Erythrocytes</topic><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>FDA approval</topic><topic>Fetal Hemoglobin - metabolism</topic><topic>Fetuses</topic><topic>Flow cytometry</topic><topic>Gene expression</topic><topic>HBB gene</topic><topic>Hemoglobin</topic><topic>Hemoglobin S</topic><topic>Humans</topic><topic>Hydroxyurea</topic><topic>Hypoxia</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mutation</topic><topic>Occlusion</topic><topic>Oxidative stress</topic><topic>Oxygen</topic><topic>Phosphoprotein phosphatase</topic><topic>Progenitor cells</topic><topic>Protein folding</topic><topic>Protein phosphatase</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Research and Analysis Methods</topic><topic>RNA polymerase</topic><topic>Sickle cell anemia</topic><topic>Sickle cell disease</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Thiourea - analogs & derivatives</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Nicole H</creatorcontrib><creatorcontrib>Li, Biaoru</creatorcontrib><creatorcontrib>Palani, Chithra</creatorcontrib><creatorcontrib>Siddaramappa, Umapathy</creatorcontrib><creatorcontrib>Takezaki, Mayuko</creatorcontrib><creatorcontrib>Xu, Hongyan</creatorcontrib><creatorcontrib>Zhi, Wenbo</creatorcontrib><creatorcontrib>Pace, Betty S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context: Health and Medicine</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, Nicole H</au><au>Li, Biaoru</au><au>Palani, Chithra</au><au>Siddaramappa, Umapathy</au><au>Takezaki, Mayuko</au><au>Xu, Hongyan</au><au>Zhi, Wenbo</au><au>Pace, Betty S</au><au>Grosso, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-05-31</date><risdate>2022</risdate><volume>17</volume><issue>5</issue><spage>e0261799</spage><epage>e0261799</epage><pages>e0261799-e0261799</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sickle cell disease (SCD) is an inherited blood disorder caused by a mutation in the HBB gene leading to hemoglobin S production and polymerization under hypoxia conditions leading to vaso-occlusion, chronic hemolysis, and progressive organ damage. This disease affects ~100,000 people in the United States and millions worldwide. An effective therapy for SCD is fetal hemoglobin (HbF) induction by pharmacologic agents such as hydroxyurea, the only Food and Drug Administration-approved drug for this purpose. Therefore, the goal of our study was to determine whether salubrinal (SAL), a selective protein phosphatase 1 inhibitor, induces HbF expression through the stress-signaling pathway by activation of p-eIF2α and ATF4 trans-activation in the γ-globin gene promoter. Sickle erythroid progenitors treated with 24μM SAL increased F-cells levels 1.4-fold (p = 0.021) and produced an 80% decrease in reactive oxygen species. Western blot analysis showed SAL enhanced HbF protein by 1.6-fold (p = 0.0441), along with dose-dependent increases of p-eIF2α and ATF4 levels. Subsequent treatment of SCD mice by a single intraperitoneal injection of SAL (5mg/kg) produced peak plasma concentrations at 6 hours. Chronic treatments of SCD mice with SAL mediated a 2.3-fold increase in F-cells (p = 0.0013) and decreased sickle erythrocytes supporting in vivo HbF induction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35639781</pmid><doi>10.1371/journal.pone.0261799</doi><tpages>e0261799</tpages><orcidid>https://orcid.org/0000-0002-1275-4112</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-05, Vol.17 (5), p.e0261799-e0261799 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2687689723 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Anemia Anemia, Sickle Cell Animals Antibodies Binding sites Biology and Life Sciences Biotechnology Care and treatment Cinnamates - pharmacology Cinnamates - therapeutic use Diagnosis Drug dosages Erythrocytes Eukaryotic Initiation Factor-2 - metabolism FDA approval Fetal Hemoglobin - metabolism Fetuses Flow cytometry Gene expression HBB gene Hemoglobin Hemoglobin S Humans Hydroxyurea Hypoxia Medicine and Health Sciences Mice Mutation Occlusion Oxidative stress Oxygen Phosphoprotein phosphatase Progenitor cells Protein folding Protein phosphatase Proteins Reactive oxygen species Research and Analysis Methods RNA polymerase Sickle cell anemia Sickle cell disease Signal Transduction Signaling Thiourea - analogs & derivatives Transgenic animals |
title | Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salubrinal%20induces%20fetal%20hemoglobin%20expression%20via%20the%20stress-signaling%20pathway%20in%20human%20sickle%20erythroid%20progenitors%20and%20sickle%20cell%20disease%20mice&rft.jtitle=PloS%20one&rft.au=Lopez,%20Nicole%20H&rft.date=2022-05-31&rft.volume=17&rft.issue=5&rft.spage=e0261799&rft.epage=e0261799&rft.pages=e0261799-e0261799&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0261799&rft_dat=%3Cgale_plos_%3EA705554037%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-461c6a12e2774f59084968a8841079ecf5e96dfe92c8c6ea2266e12adcbd44343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2687689723&rft_id=info:pmid/35639781&rft_galeid=A705554037&rfr_iscdi=true |