Loading…
Multivariate analyses of Ethiopian durum wheat revealed stable and high yielding genotypes
Improving crop adaptation and stability across diverse and changing environmental conditions is essential to increasing grain yield per unit area. In turn, this contributes to meeting the increasing global food demand. Nevertheless, a number of factors challenge the efficiency of crop improvement pr...
Saved in:
Published in: | PloS one 2022-08, Vol.17 (8), p.e0273008-e0273008 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c638t-db29c7e2843147aef9357a55b13b3d46089e10df78bd3cab37bb0116cdcc1d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c638t-db29c7e2843147aef9357a55b13b3d46089e10df78bd3cab37bb0116cdcc1d13 |
container_end_page | e0273008 |
container_issue | 8 |
container_start_page | e0273008 |
container_title | PloS one |
container_volume | 17 |
creator | Mulugeta, Behailu Tesfaye, Kassahun Geleta, Mulatu Johansson, Eva Hailesilassie, Teklehaimanot Hammenhag, Cecilia Hailu, Faris Ortiz, Rodomiro |
description | Improving crop adaptation and stability across diverse and changing environmental conditions is essential to increasing grain yield per unit area. In turn, this contributes to meeting the increasing global food demand. Nevertheless, a number of factors challenge the efficiency of crop improvement programs, of which genotype-by-environment interaction (GEI) is one of the major factors. This study aimed to evaluate the performance and phenotypic stability of 385 Ethiopian durum wheat landraces and 35 cultivars; assess the pattern of genotype by environment interaction (GEI) effect, and identify stable and high-yielding landraces or cultivars using the additive main effect and multiplicative interaction (AMMI) and genotype main effect plus genotype by environment interaction biplot (GGE-biplot). The experiment was laid out in an alpha lattice design with two replications at five test sites (Akaki, Chefe Donsa, Holeta, Kulumsa, and Sinana). The combined analysis of variance revealed highly significant effects (P [less than or equal to] 0.01) of environments (E), genotype (G), and GEI on a phenotypic variation of traits evaluated, including grain yield. For all traits, the amount of phenotypic variance and GEI explained by the GGE biplot was higher than in AMMI2, but both exhibited significant effects of E and GEI on the genotypes. The AMMI model identified G169, G420, G413, G139, G415, G416, G417, and G418 as stable genotypes across testing sites. Whereas, the GGE biplot identified G169, G420, G415, G139, G106, G412, G413, and G417 as both high-yielding and stable across test sites. Hence, genotypes identified as stable and high yielding in the present study could be used in a durum wheat breeding program aimed at identifying genes and molecular markers associated with the crop's productivity traits as well as developing stable and high-yielding cultivars for use in East Africa and beyond. |
doi_str_mv | 10.1371/journal.pone.0273008 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2703383673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714155748</galeid><doaj_id>oai_doaj_org_article_3948508fb62d4ffbabfdb77bb354da42</doaj_id><sourcerecordid>A714155748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-db29c7e2843147aef9357a55b13b3d46089e10df78bd3cab37bb0116cdcc1d13</originalsourceid><addsrcrecordid>eNqNk0GP1CAUxxujcdfVb2BiExOjhxmhtEAvJpvNqpOs2UQ3HrwQKK8tE6Z0gc46317GGXVrPBgOEPj9_4_34GXZc4yWmDD8du0mP0i7HN0AS1QwghB_kJ3imhQLWiDy8N76JHsSwhqhinBKH2cnpKoZ5ZyeZt8-TTaarfRGRshlMtwFCLlr88vYGzcaOeR68tMmv-tBxtzDFqQFnYcold0rdN6brs93Bqw2Q5d3MLi4GyE8zR610gZ4dpzPspv3lzcXHxdX1x9WF-dXi4YSHhdaFXXDoOAlwSWT0NakYrKqFCaK6JIiXgNGumVcadJIRZhSCGPa6KbBGpOz7MXBdrQuiGNVgigYIoQTykgiVgdCO7kWozcb6XfCSSN-bjjfCemjaSwIUpe8QrxVtNBl2yqpWq1YikiqUsuySF7Lg1e4g3FSM7dgJyX9fhIBBMa8rFkSvDteb1Ib0A0M0Us7081PBtOLzm1FTdJN6D6_10cD724nCFFsTGjAWjmAmw6JlpjSiif05V_ov8txpLr0kMIMrUtxm72pOGe4xFXFSv4n0RmVhoaNadKfa03anwnezASJifA9dnIKQay-fP5_9vrrnH11j02f0MY-ODtF44YwB8sD2HgXgof2d5ExEvuW-VUNsW8ZcWwZ8gMllgk1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703383673</pqid></control><display><type>article</type><title>Multivariate analyses of Ethiopian durum wheat revealed stable and high yielding genotypes</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Mulugeta, Behailu ; Tesfaye, Kassahun ; Geleta, Mulatu ; Johansson, Eva ; Hailesilassie, Teklehaimanot ; Hammenhag, Cecilia ; Hailu, Faris ; Ortiz, Rodomiro</creator><contributor>Arzani, Ahmad</contributor><creatorcontrib>Mulugeta, Behailu ; Tesfaye, Kassahun ; Geleta, Mulatu ; Johansson, Eva ; Hailesilassie, Teklehaimanot ; Hammenhag, Cecilia ; Hailu, Faris ; Ortiz, Rodomiro ; Sveriges lantbruksuniversitet ; Arzani, Ahmad</creatorcontrib><description>Improving crop adaptation and stability across diverse and changing environmental conditions is essential to increasing grain yield per unit area. In turn, this contributes to meeting the increasing global food demand. Nevertheless, a number of factors challenge the efficiency of crop improvement programs, of which genotype-by-environment interaction (GEI) is one of the major factors. This study aimed to evaluate the performance and phenotypic stability of 385 Ethiopian durum wheat landraces and 35 cultivars; assess the pattern of genotype by environment interaction (GEI) effect, and identify stable and high-yielding landraces or cultivars using the additive main effect and multiplicative interaction (AMMI) and genotype main effect plus genotype by environment interaction biplot (GGE-biplot). The experiment was laid out in an alpha lattice design with two replications at five test sites (Akaki, Chefe Donsa, Holeta, Kulumsa, and Sinana). The combined analysis of variance revealed highly significant effects (P [less than or equal to] 0.01) of environments (E), genotype (G), and GEI on a phenotypic variation of traits evaluated, including grain yield. For all traits, the amount of phenotypic variance and GEI explained by the GGE biplot was higher than in AMMI2, but both exhibited significant effects of E and GEI on the genotypes. The AMMI model identified G169, G420, G413, G139, G415, G416, G417, and G418 as stable genotypes across testing sites. Whereas, the GGE biplot identified G169, G420, G415, G139, G106, G412, G413, and G417 as both high-yielding and stable across test sites. Hence, genotypes identified as stable and high yielding in the present study could be used in a durum wheat breeding program aimed at identifying genes and molecular markers associated with the crop's productivity traits as well as developing stable and high-yielding cultivars for use in East Africa and beyond.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0273008</identifier><identifier>PMID: 35976886</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Agricultural production ; Agricultural Science ; Analysis ; Biology and Life Sciences ; Crop improvement ; Crop yield ; Crop yields ; Crops ; Cultivars ; Earth Sciences ; Environmental changes ; Environmental conditions ; Food supply ; Genetic aspects ; Genetics and Breeding ; Genetik och förädling ; Genotype ; Genotype & phenotype ; Genotype-environment interactions ; Genotypes ; Germplasm ; Grain ; Jordbruksvetenskap ; Lattice design ; Management ; Performance evaluation ; Phenotypic variations ; Plant breeding ; Plant resistance ; Research and Analysis Methods ; Seeds ; Stability analysis ; Triticum durum ; Variance analysis ; Wheat</subject><ispartof>PloS one, 2022-08, Vol.17 (8), p.e0273008-e0273008</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Mulugeta et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Mulugeta et al 2022 Mulugeta et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-db29c7e2843147aef9357a55b13b3d46089e10df78bd3cab37bb0116cdcc1d13</citedby><cites>FETCH-LOGICAL-c638t-db29c7e2843147aef9357a55b13b3d46089e10df78bd3cab37bb0116cdcc1d13</cites><orcidid>0000-0002-4046-4657 ; 0000-0002-6370-940X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2703383673/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2703383673?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/118497$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Arzani, Ahmad</contributor><creatorcontrib>Mulugeta, Behailu</creatorcontrib><creatorcontrib>Tesfaye, Kassahun</creatorcontrib><creatorcontrib>Geleta, Mulatu</creatorcontrib><creatorcontrib>Johansson, Eva</creatorcontrib><creatorcontrib>Hailesilassie, Teklehaimanot</creatorcontrib><creatorcontrib>Hammenhag, Cecilia</creatorcontrib><creatorcontrib>Hailu, Faris</creatorcontrib><creatorcontrib>Ortiz, Rodomiro</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Multivariate analyses of Ethiopian durum wheat revealed stable and high yielding genotypes</title><title>PloS one</title><description>Improving crop adaptation and stability across diverse and changing environmental conditions is essential to increasing grain yield per unit area. In turn, this contributes to meeting the increasing global food demand. Nevertheless, a number of factors challenge the efficiency of crop improvement programs, of which genotype-by-environment interaction (GEI) is one of the major factors. This study aimed to evaluate the performance and phenotypic stability of 385 Ethiopian durum wheat landraces and 35 cultivars; assess the pattern of genotype by environment interaction (GEI) effect, and identify stable and high-yielding landraces or cultivars using the additive main effect and multiplicative interaction (AMMI) and genotype main effect plus genotype by environment interaction biplot (GGE-biplot). The experiment was laid out in an alpha lattice design with two replications at five test sites (Akaki, Chefe Donsa, Holeta, Kulumsa, and Sinana). The combined analysis of variance revealed highly significant effects (P [less than or equal to] 0.01) of environments (E), genotype (G), and GEI on a phenotypic variation of traits evaluated, including grain yield. For all traits, the amount of phenotypic variance and GEI explained by the GGE biplot was higher than in AMMI2, but both exhibited significant effects of E and GEI on the genotypes. The AMMI model identified G169, G420, G413, G139, G415, G416, G417, and G418 as stable genotypes across testing sites. Whereas, the GGE biplot identified G169, G420, G415, G139, G106, G412, G413, and G417 as both high-yielding and stable across test sites. Hence, genotypes identified as stable and high yielding in the present study could be used in a durum wheat breeding program aimed at identifying genes and molecular markers associated with the crop's productivity traits as well as developing stable and high-yielding cultivars for use in East Africa and beyond.</description><subject>Agricultural production</subject><subject>Agricultural Science</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Crop improvement</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Earth Sciences</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Food supply</subject><subject>Genetic aspects</subject><subject>Genetics and Breeding</subject><subject>Genetik och förädling</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Genotype-environment interactions</subject><subject>Genotypes</subject><subject>Germplasm</subject><subject>Grain</subject><subject>Jordbruksvetenskap</subject><subject>Lattice design</subject><subject>Management</subject><subject>Performance evaluation</subject><subject>Phenotypic variations</subject><subject>Plant breeding</subject><subject>Plant resistance</subject><subject>Research and Analysis Methods</subject><subject>Seeds</subject><subject>Stability analysis</subject><subject>Triticum durum</subject><subject>Variance analysis</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0GP1CAUxxujcdfVb2BiExOjhxmhtEAvJpvNqpOs2UQ3HrwQKK8tE6Z0gc46317GGXVrPBgOEPj9_4_34GXZc4yWmDD8du0mP0i7HN0AS1QwghB_kJ3imhQLWiDy8N76JHsSwhqhinBKH2cnpKoZ5ZyeZt8-TTaarfRGRshlMtwFCLlr88vYGzcaOeR68tMmv-tBxtzDFqQFnYcold0rdN6brs93Bqw2Q5d3MLi4GyE8zR610gZ4dpzPspv3lzcXHxdX1x9WF-dXi4YSHhdaFXXDoOAlwSWT0NakYrKqFCaK6JIiXgNGumVcadJIRZhSCGPa6KbBGpOz7MXBdrQuiGNVgigYIoQTykgiVgdCO7kWozcb6XfCSSN-bjjfCemjaSwIUpe8QrxVtNBl2yqpWq1YikiqUsuySF7Lg1e4g3FSM7dgJyX9fhIBBMa8rFkSvDteb1Ib0A0M0Us7081PBtOLzm1FTdJN6D6_10cD724nCFFsTGjAWjmAmw6JlpjSiif05V_ov8txpLr0kMIMrUtxm72pOGe4xFXFSv4n0RmVhoaNadKfa03anwnezASJifA9dnIKQay-fP5_9vrrnH11j02f0MY-ODtF44YwB8sD2HgXgof2d5ExEvuW-VUNsW8ZcWwZ8gMllgk1</recordid><startdate>20220817</startdate><enddate>20220817</enddate><creator>Mulugeta, Behailu</creator><creator>Tesfaye, Kassahun</creator><creator>Geleta, Mulatu</creator><creator>Johansson, Eva</creator><creator>Hailesilassie, Teklehaimanot</creator><creator>Hammenhag, Cecilia</creator><creator>Hailu, Faris</creator><creator>Ortiz, Rodomiro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4046-4657</orcidid><orcidid>https://orcid.org/0000-0002-6370-940X</orcidid></search><sort><creationdate>20220817</creationdate><title>Multivariate analyses of Ethiopian durum wheat revealed stable and high yielding genotypes</title><author>Mulugeta, Behailu ; Tesfaye, Kassahun ; Geleta, Mulatu ; Johansson, Eva ; Hailesilassie, Teklehaimanot ; Hammenhag, Cecilia ; Hailu, Faris ; Ortiz, Rodomiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-db29c7e2843147aef9357a55b13b3d46089e10df78bd3cab37bb0116cdcc1d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural production</topic><topic>Agricultural Science</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Crop improvement</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Earth Sciences</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Food supply</topic><topic>Genetic aspects</topic><topic>Genetics and Breeding</topic><topic>Genetik och förädling</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Genotype-environment interactions</topic><topic>Genotypes</topic><topic>Germplasm</topic><topic>Grain</topic><topic>Jordbruksvetenskap</topic><topic>Lattice design</topic><topic>Management</topic><topic>Performance evaluation</topic><topic>Phenotypic variations</topic><topic>Plant breeding</topic><topic>Plant resistance</topic><topic>Research and Analysis Methods</topic><topic>Seeds</topic><topic>Stability analysis</topic><topic>Triticum durum</topic><topic>Variance analysis</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulugeta, Behailu</creatorcontrib><creatorcontrib>Tesfaye, Kassahun</creatorcontrib><creatorcontrib>Geleta, Mulatu</creatorcontrib><creatorcontrib>Johansson, Eva</creatorcontrib><creatorcontrib>Hailesilassie, Teklehaimanot</creatorcontrib><creatorcontrib>Hammenhag, Cecilia</creatorcontrib><creatorcontrib>Hailu, Faris</creatorcontrib><creatorcontrib>Ortiz, Rodomiro</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulugeta, Behailu</au><au>Tesfaye, Kassahun</au><au>Geleta, Mulatu</au><au>Johansson, Eva</au><au>Hailesilassie, Teklehaimanot</au><au>Hammenhag, Cecilia</au><au>Hailu, Faris</au><au>Ortiz, Rodomiro</au><au>Arzani, Ahmad</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate analyses of Ethiopian durum wheat revealed stable and high yielding genotypes</atitle><jtitle>PloS one</jtitle><date>2022-08-17</date><risdate>2022</risdate><volume>17</volume><issue>8</issue><spage>e0273008</spage><epage>e0273008</epage><pages>e0273008-e0273008</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Improving crop adaptation and stability across diverse and changing environmental conditions is essential to increasing grain yield per unit area. In turn, this contributes to meeting the increasing global food demand. Nevertheless, a number of factors challenge the efficiency of crop improvement programs, of which genotype-by-environment interaction (GEI) is one of the major factors. This study aimed to evaluate the performance and phenotypic stability of 385 Ethiopian durum wheat landraces and 35 cultivars; assess the pattern of genotype by environment interaction (GEI) effect, and identify stable and high-yielding landraces or cultivars using the additive main effect and multiplicative interaction (AMMI) and genotype main effect plus genotype by environment interaction biplot (GGE-biplot). The experiment was laid out in an alpha lattice design with two replications at five test sites (Akaki, Chefe Donsa, Holeta, Kulumsa, and Sinana). The combined analysis of variance revealed highly significant effects (P [less than or equal to] 0.01) of environments (E), genotype (G), and GEI on a phenotypic variation of traits evaluated, including grain yield. For all traits, the amount of phenotypic variance and GEI explained by the GGE biplot was higher than in AMMI2, but both exhibited significant effects of E and GEI on the genotypes. The AMMI model identified G169, G420, G413, G139, G415, G416, G417, and G418 as stable genotypes across testing sites. Whereas, the GGE biplot identified G169, G420, G415, G139, G106, G412, G413, and G417 as both high-yielding and stable across test sites. Hence, genotypes identified as stable and high yielding in the present study could be used in a durum wheat breeding program aimed at identifying genes and molecular markers associated with the crop's productivity traits as well as developing stable and high-yielding cultivars for use in East Africa and beyond.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>35976886</pmid><doi>10.1371/journal.pone.0273008</doi><orcidid>https://orcid.org/0000-0002-4046-4657</orcidid><orcidid>https://orcid.org/0000-0002-6370-940X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-08, Vol.17 (8), p.e0273008-e0273008 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2703383673 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free |
subjects | Agricultural production Agricultural Science Analysis Biology and Life Sciences Crop improvement Crop yield Crop yields Crops Cultivars Earth Sciences Environmental changes Environmental conditions Food supply Genetic aspects Genetics and Breeding Genetik och förädling Genotype Genotype & phenotype Genotype-environment interactions Genotypes Germplasm Grain Jordbruksvetenskap Lattice design Management Performance evaluation Phenotypic variations Plant breeding Plant resistance Research and Analysis Methods Seeds Stability analysis Triticum durum Variance analysis Wheat |
title | Multivariate analyses of Ethiopian durum wheat revealed stable and high yielding genotypes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20analyses%20of%20Ethiopian%20durum%20wheat%20revealed%20stable%20and%20high%20yielding%20genotypes&rft.jtitle=PloS%20one&rft.au=Mulugeta,%20Behailu&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2022-08-17&rft.volume=17&rft.issue=8&rft.spage=e0273008&rft.epage=e0273008&rft.pages=e0273008-e0273008&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0273008&rft_dat=%3Cgale_plos_%3EA714155748%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c638t-db29c7e2843147aef9357a55b13b3d46089e10df78bd3cab37bb0116cdcc1d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703383673&rft_id=info:pmid/35976886&rft_galeid=A714155748&rfr_iscdi=true |