Loading…

Evaluating fomite risk of brown paper bags storing personal protective equipment exposed to SARS-CoV-2: A quasi-experimental study

Literature is lacking on the safety of storing contaminated PPE in paper bags for reuse, potentially increasing exposure to frontline healthcare workers (HCW) and patients. The aim of this study is to evaluate the effectiveness of paper bags as a barrier for fomite transmission of SARS-CoV-2 by stor...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-08, Vol.17 (8), p.e0273433
Main Authors: Unger, Kyirsty, Dietz, Leslie, Horve, Patrick, Van Den Wymelenberg, Kevin, Lin, Amber, Kinney, Erin, Kea, Bory
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Literature is lacking on the safety of storing contaminated PPE in paper bags for reuse, potentially increasing exposure to frontline healthcare workers (HCW) and patients. The aim of this study is to evaluate the effectiveness of paper bags as a barrier for fomite transmission of SARS-CoV-2 by storing face masks, respirators, and face shields. This quasi-experimental study evaluated the presence of SARS-CoV-2 on the interior and exterior surfaces of paper bags containing PPE that had aerosolized exposures in clinical and simulated settings. Between May and October 2020, 30 unique PPE items were collected from COVID-19 units at two urban hospitals. Exposed PPE, worn by either an infected patient or HCW during a SARS-CoV-2 aerosolizing event, were placed into an unused paper bag. Samples were tested at 30-minute and 12-hour intervals. A total of 177 swabs were processed from 30 PPE samples. We found a 6.8% positivity rate among all samples across both collection sites. Highest positivity rates were associated with ventilator disconnection and exposure to respiratory droplets from coughing. Positivity rates differed between hospital units. Total positivity rates were similar between 30-minute (6.7%) and 12-hour (6.9%) sample testing time intervals. Control samples exposed to inactivated SARS-CoV-2 droplets had higher total viral counts than samples exposed to nebulized aerosols. Data suggests paper bags are not a significant fomite risk for SARS-CoV-2 transmission. However, controls demonstrated a risk with droplet exposure. Data can inform guidelines for storing and re-using PPE in situations of limited supplies during future pandemics.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0273433