Loading…

Estimation of Ebola’s spillover infection exposure in Sierra Leone based on sociodemographic and economic factors

Zoonotic diseases spread through pathogens-infected animal carriers. In the case of Ebola Virus Disease (EVD), evidence supports that the main carriers are fruit bats and non-human primates. Further, EVD spread is a multi-factorial problem that depends on sociodemographic and economic (SDE) factors....

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-09, Vol.17 (9), p.e0271886-e0271886
Main Authors: Mursel, Sena, Alter, Nathaniel, Slavit, Lindsay, Smith, Anna, Bocchini, Paolo, Buceta, Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c618t-1266653306342bd56f9097d36bc9d61e1a41a7b95b6c978fde01eb2e336ba6f53
container_end_page e0271886
container_issue 9
container_start_page e0271886
container_title PloS one
container_volume 17
creator Mursel, Sena
Alter, Nathaniel
Slavit, Lindsay
Smith, Anna
Bocchini, Paolo
Buceta, Javier
description Zoonotic diseases spread through pathogens-infected animal carriers. In the case of Ebola Virus Disease (EVD), evidence supports that the main carriers are fruit bats and non-human primates. Further, EVD spread is a multi-factorial problem that depends on sociodemographic and economic (SDE) factors. Here we inquire into this phenomenon and aim at determining, quantitatively, the Ebola spillover infection exposure map and try to link it to SDE factors. To that end, we designed and conducted a survey in Sierra Leone and implement a pipeline to analyze data using regression and machine learning techniques. Our methodology is able (1) to identify the features that are best predictors of an individual’s tendency to partake in behaviors that can expose them to Ebola infection, (2) to develop a predictive model about the spillover risk statistics that can be calibrated for different regions and future times, and (3) to compute a spillover exposure map for Sierra Leone. Our results and conclusions are relevant to identify the regions in Sierra Leone at risk of EVD spillover and, consequently, to design and implement policies for an effective deployment of resources (e.g., drug supplies) and other preventative measures (e.g., educational campaigns).
doi_str_mv 10.1371/journal.pone.0271886
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2708995921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715828113</galeid><doaj_id>oai_doaj_org_article_cc4185e3ea154c7db73e46f216ebc923</doaj_id><sourcerecordid>A715828113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-1266653306342bd56f9097d36bc9d61e1a41a7b95b6c978fde01eb2e336ba6f53</originalsourceid><addsrcrecordid>eNqNk92K1DAUx4so7rr6BoIFQfRixny0aXojLMuoAwMLrnob0vR0Jkumpybtst75Gr6eT2I6U2UreyG5aHr6O__z1ZMkzylZUl7Qt9c4-Fa7ZYctLAkrqJTiQXJKS84WghH-8M79JHkSwjUhOZdCPE5OuCCZLCQ5TcIq9Have4ttik26qtDpXz9-hjR01jm8AZ_atgFzAOC2wzB4iKb0yoL3Ot1ADJ9WOkCdRiKgsVjDHrdedztrUt3WKRhscR9fGm169OFp8qjRLsCz6XmWfHm_-nzxcbG5_LC-ON8sjKCyX1AmhMg5J4JnrKpz0ZSkLGouKlPWggLVGdVFVeaVMGUhmxoIhYoBj4QWTc7PkhdH3c5hUFO_gmIFkWWZl4xGYn0katTXqvOxE_67Qm3VwYB-q7TvrXGgjMmozIGDpnlmiroqOGSiYVRAzIfxqPVuijZUe6gNtL3XbiY6_9LandrijSozLighUeD1JODx2wChV3sbDDinW8DhkHdJWBzcWNnLf9D7q5uorY4FxDFijGtGUXVe0FwySemY9_IeKp44RhsnB42N9pnDm5lDZHq47bd6CEGtrz79P3v5dc6-usPuQLt-F9AN468X5mB2BI3HEDw0f5tMiRp340831LgbatoN_hsc-AFj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708995921</pqid></control><display><type>article</type><title>Estimation of Ebola’s spillover infection exposure in Sierra Leone based on sociodemographic and economic factors</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Mursel, Sena ; Alter, Nathaniel ; Slavit, Lindsay ; Smith, Anna ; Bocchini, Paolo ; Buceta, Javier</creator><contributor>d’Onofrio, Alberto</contributor><creatorcontrib>Mursel, Sena ; Alter, Nathaniel ; Slavit, Lindsay ; Smith, Anna ; Bocchini, Paolo ; Buceta, Javier ; d’Onofrio, Alberto</creatorcontrib><description>Zoonotic diseases spread through pathogens-infected animal carriers. In the case of Ebola Virus Disease (EVD), evidence supports that the main carriers are fruit bats and non-human primates. Further, EVD spread is a multi-factorial problem that depends on sociodemographic and economic (SDE) factors. Here we inquire into this phenomenon and aim at determining, quantitatively, the Ebola spillover infection exposure map and try to link it to SDE factors. To that end, we designed and conducted a survey in Sierra Leone and implement a pipeline to analyze data using regression and machine learning techniques. Our methodology is able (1) to identify the features that are best predictors of an individual’s tendency to partake in behaviors that can expose them to Ebola infection, (2) to develop a predictive model about the spillover risk statistics that can be calibrated for different regions and future times, and (3) to compute a spillover exposure map for Sierra Leone. Our results and conclusions are relevant to identify the regions in Sierra Leone at risk of EVD spillover and, consequently, to design and implement policies for an effective deployment of resources (e.g., drug supplies) and other preventative measures (e.g., educational campaigns).</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0271886</identifier><identifier>PMID: 36048780</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Computer and Information Sciences ; COVID-19 ; Demographics ; Diagnosis ; Disease transmission ; Distribution ; Earth Sciences ; Ebola virus ; Ebola virus infections ; Ebolavirus ; Economic factors ; Economics ; Epidemics ; Exposure ; Health risks ; Infections ; Infectious diseases ; Machine learning ; Medicine and Health Sciences ; Pandemics ; People and places ; Polls &amp; surveys ; Population ; Prediction models ; Research and Analysis Methods ; Rural areas ; Sociodemographics ; Socioeconomic factors ; Viral diseases ; Viruses ; Zoonoses</subject><ispartof>PloS one, 2022-09, Vol.17 (9), p.e0271886-e0271886</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Mursel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Mursel et al 2022 Mursel et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c618t-1266653306342bd56f9097d36bc9d61e1a41a7b95b6c978fde01eb2e336ba6f53</cites><orcidid>0000-0003-1791-0011 ; 0000-0002-5685-2283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2708995921/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2708995921?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>d’Onofrio, Alberto</contributor><creatorcontrib>Mursel, Sena</creatorcontrib><creatorcontrib>Alter, Nathaniel</creatorcontrib><creatorcontrib>Slavit, Lindsay</creatorcontrib><creatorcontrib>Smith, Anna</creatorcontrib><creatorcontrib>Bocchini, Paolo</creatorcontrib><creatorcontrib>Buceta, Javier</creatorcontrib><title>Estimation of Ebola’s spillover infection exposure in Sierra Leone based on sociodemographic and economic factors</title><title>PloS one</title><description>Zoonotic diseases spread through pathogens-infected animal carriers. In the case of Ebola Virus Disease (EVD), evidence supports that the main carriers are fruit bats and non-human primates. Further, EVD spread is a multi-factorial problem that depends on sociodemographic and economic (SDE) factors. Here we inquire into this phenomenon and aim at determining, quantitatively, the Ebola spillover infection exposure map and try to link it to SDE factors. To that end, we designed and conducted a survey in Sierra Leone and implement a pipeline to analyze data using regression and machine learning techniques. Our methodology is able (1) to identify the features that are best predictors of an individual’s tendency to partake in behaviors that can expose them to Ebola infection, (2) to develop a predictive model about the spillover risk statistics that can be calibrated for different regions and future times, and (3) to compute a spillover exposure map for Sierra Leone. Our results and conclusions are relevant to identify the regions in Sierra Leone at risk of EVD spillover and, consequently, to design and implement policies for an effective deployment of resources (e.g., drug supplies) and other preventative measures (e.g., educational campaigns).</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>COVID-19</subject><subject>Demographics</subject><subject>Diagnosis</subject><subject>Disease transmission</subject><subject>Distribution</subject><subject>Earth Sciences</subject><subject>Ebola virus</subject><subject>Ebola virus infections</subject><subject>Ebolavirus</subject><subject>Economic factors</subject><subject>Economics</subject><subject>Epidemics</subject><subject>Exposure</subject><subject>Health risks</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Pandemics</subject><subject>People and places</subject><subject>Polls &amp; surveys</subject><subject>Population</subject><subject>Prediction models</subject><subject>Research and Analysis Methods</subject><subject>Rural areas</subject><subject>Sociodemographics</subject><subject>Socioeconomic factors</subject><subject>Viral diseases</subject><subject>Viruses</subject><subject>Zoonoses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk92K1DAUx4so7rr6BoIFQfRixny0aXojLMuoAwMLrnob0vR0Jkumpybtst75Gr6eT2I6U2UreyG5aHr6O__z1ZMkzylZUl7Qt9c4-Fa7ZYctLAkrqJTiQXJKS84WghH-8M79JHkSwjUhOZdCPE5OuCCZLCQ5TcIq9Have4ttik26qtDpXz9-hjR01jm8AZ_atgFzAOC2wzB4iKb0yoL3Ot1ADJ9WOkCdRiKgsVjDHrdedztrUt3WKRhscR9fGm169OFp8qjRLsCz6XmWfHm_-nzxcbG5_LC-ON8sjKCyX1AmhMg5J4JnrKpz0ZSkLGouKlPWggLVGdVFVeaVMGUhmxoIhYoBj4QWTc7PkhdH3c5hUFO_gmIFkWWZl4xGYn0katTXqvOxE_67Qm3VwYB-q7TvrXGgjMmozIGDpnlmiroqOGSiYVRAzIfxqPVuijZUe6gNtL3XbiY6_9LandrijSozLighUeD1JODx2wChV3sbDDinW8DhkHdJWBzcWNnLf9D7q5uorY4FxDFijGtGUXVe0FwySemY9_IeKp44RhsnB42N9pnDm5lDZHq47bd6CEGtrz79P3v5dc6-usPuQLt-F9AN468X5mB2BI3HEDw0f5tMiRp340831LgbatoN_hsc-AFj</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mursel, Sena</creator><creator>Alter, Nathaniel</creator><creator>Slavit, Lindsay</creator><creator>Smith, Anna</creator><creator>Bocchini, Paolo</creator><creator>Buceta, Javier</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1791-0011</orcidid><orcidid>https://orcid.org/0000-0002-5685-2283</orcidid></search><sort><creationdate>20220901</creationdate><title>Estimation of Ebola’s spillover infection exposure in Sierra Leone based on sociodemographic and economic factors</title><author>Mursel, Sena ; Alter, Nathaniel ; Slavit, Lindsay ; Smith, Anna ; Bocchini, Paolo ; Buceta, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-1266653306342bd56f9097d36bc9d61e1a41a7b95b6c978fde01eb2e336ba6f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>COVID-19</topic><topic>Demographics</topic><topic>Diagnosis</topic><topic>Disease transmission</topic><topic>Distribution</topic><topic>Earth Sciences</topic><topic>Ebola virus</topic><topic>Ebola virus infections</topic><topic>Ebolavirus</topic><topic>Economic factors</topic><topic>Economics</topic><topic>Epidemics</topic><topic>Exposure</topic><topic>Health risks</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Pandemics</topic><topic>People and places</topic><topic>Polls &amp; surveys</topic><topic>Population</topic><topic>Prediction models</topic><topic>Research and Analysis Methods</topic><topic>Rural areas</topic><topic>Sociodemographics</topic><topic>Socioeconomic factors</topic><topic>Viral diseases</topic><topic>Viruses</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mursel, Sena</creatorcontrib><creatorcontrib>Alter, Nathaniel</creatorcontrib><creatorcontrib>Slavit, Lindsay</creatorcontrib><creatorcontrib>Smith, Anna</creatorcontrib><creatorcontrib>Bocchini, Paolo</creatorcontrib><creatorcontrib>Buceta, Javier</creatorcontrib><collection>CrossRef</collection><collection>Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mursel, Sena</au><au>Alter, Nathaniel</au><au>Slavit, Lindsay</au><au>Smith, Anna</au><au>Bocchini, Paolo</au><au>Buceta, Javier</au><au>d’Onofrio, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Ebola’s spillover infection exposure in Sierra Leone based on sociodemographic and economic factors</atitle><jtitle>PloS one</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>17</volume><issue>9</issue><spage>e0271886</spage><epage>e0271886</epage><pages>e0271886-e0271886</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Zoonotic diseases spread through pathogens-infected animal carriers. In the case of Ebola Virus Disease (EVD), evidence supports that the main carriers are fruit bats and non-human primates. Further, EVD spread is a multi-factorial problem that depends on sociodemographic and economic (SDE) factors. Here we inquire into this phenomenon and aim at determining, quantitatively, the Ebola spillover infection exposure map and try to link it to SDE factors. To that end, we designed and conducted a survey in Sierra Leone and implement a pipeline to analyze data using regression and machine learning techniques. Our methodology is able (1) to identify the features that are best predictors of an individual’s tendency to partake in behaviors that can expose them to Ebola infection, (2) to develop a predictive model about the spillover risk statistics that can be calibrated for different regions and future times, and (3) to compute a spillover exposure map for Sierra Leone. Our results and conclusions are relevant to identify the regions in Sierra Leone at risk of EVD spillover and, consequently, to design and implement policies for an effective deployment of resources (e.g., drug supplies) and other preventative measures (e.g., educational campaigns).</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36048780</pmid><doi>10.1371/journal.pone.0271886</doi><tpages>e0271886</tpages><orcidid>https://orcid.org/0000-0003-1791-0011</orcidid><orcidid>https://orcid.org/0000-0002-5685-2283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-09, Vol.17 (9), p.e0271886-e0271886
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2708995921
source Publicly Available Content Database; PubMed Central
subjects Analysis
Biology and Life Sciences
Computer and Information Sciences
COVID-19
Demographics
Diagnosis
Disease transmission
Distribution
Earth Sciences
Ebola virus
Ebola virus infections
Ebolavirus
Economic factors
Economics
Epidemics
Exposure
Health risks
Infections
Infectious diseases
Machine learning
Medicine and Health Sciences
Pandemics
People and places
Polls & surveys
Population
Prediction models
Research and Analysis Methods
Rural areas
Sociodemographics
Socioeconomic factors
Viral diseases
Viruses
Zoonoses
title Estimation of Ebola’s spillover infection exposure in Sierra Leone based on sociodemographic and economic factors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Ebola%E2%80%99s%20spillover%20infection%20exposure%20in%20Sierra%20Leone%20based%20on%20sociodemographic%20and%20economic%20factors&rft.jtitle=PloS%20one&rft.au=Mursel,%20Sena&rft.date=2022-09-01&rft.volume=17&rft.issue=9&rft.spage=e0271886&rft.epage=e0271886&rft.pages=e0271886-e0271886&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0271886&rft_dat=%3Cgale_plos_%3EA715828113%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-1266653306342bd56f9097d36bc9d61e1a41a7b95b6c978fde01eb2e336ba6f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708995921&rft_id=info:pmid/36048780&rft_galeid=A715828113&rfr_iscdi=true