Loading…
Explosive transitions to synchronization in networks of frequency dipoles
We reveal that an introduction of frequency-weighted inter-layer coupling term in networks of frequency dipoles can induce explosive synchronization transitions. The reason for explosive synchronization is that the oscillators with synchronization superiority are moderately suppressed. The findings...
Saved in:
Published in: | PloS one 2022-09, Vol.17 (9), p.e0274807 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We reveal that an introduction of frequency-weighted inter-layer coupling term in networks of frequency dipoles can induce explosive synchronization transitions. The reason for explosive synchronization is that the oscillators with synchronization superiority are moderately suppressed. The findings show that a super-linear correlation induces explosive synchronization in networks of frequency dipoles, while a linear or sub-linear correlation excites chimera-like states. Clearly, the synchronization transition mode of networks of frequency dipoles is controlled by the power-law exponent. In addition, by means of the mean-field approximation, we obtain the critical values of the coupling strength within and between layers in two limit cases. The results of theoretical analysis are in good agreement with those of numerical simulation. Compared with the previous models, the model proposed in this paper retains the topological structure of network and the intrinsic properties of oscillators, so it is easy to realize pinning control. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0274807 |