Loading…

Female zebrafish (Danio rerio) demonstrate stronger preference for established shoals over newly-formed shoals in the three-tank open-swim preference test

Zebrafish (Danio rerio) share a considerable amount of biological similarity with mammals, including identical or homologous gene expression pathways, neurotransmitters, hormones, and cellular receptors. Zebrafish also display complex social behaviors like shoaling and schooling, making them an attr...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-09, Vol.17 (9), p.e0265703
Main Authors: Velkey, Andrew J, Koon, Caroline H, Danstrom, Isabel A, Wiens, Katie M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zebrafish (Danio rerio) share a considerable amount of biological similarity with mammals, including identical or homologous gene expression pathways, neurotransmitters, hormones, and cellular receptors. Zebrafish also display complex social behaviors like shoaling and schooling, making them an attractive model for investigating normal social behavior as well as exploring impaired social function conditions such as autism spectrum disorders. Newly-formed and established shoals exhibit distinct behavior patterns and inter-member interactions that can convey the group's social stability. We used a three-chamber open-swim preference test to determine whether individual zebrafish show a preference for an established shoal over a newly-formed shoal. Results indicated that both sexes maintained greater proximity to arena zones nearest to the established shoal stimulus. In addition, we report the novel application of Shannon entropy to discover sex differences in systematicity of responses not revealed by unit-based measurements; male subjects spent more time investigating between the two shoals than female subjects. This novel technique using established versus newly-formed shoals can be used in future studies testing transgenics and pharmacological treatments that mimic autism spectrum disorder and other disorders that affect social interaction.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0265703