Loading…
Modality attention fusion model with hybrid multi-head self-attention for video understanding
Video question answering (Video-QA) is a subject undergoing intense study in Artificial Intelligence, which is one of the tasks which can evaluate such AI abilities. In this paper, we propose a Modality Attention Fusion framework with Hybrid Multi-head Self-attention (MAF-HMS). MAF-HMS focuses on th...
Saved in:
Published in: | PloS one 2022-10, Vol.17 (10), p.e0275156-e0275156 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c599t-88cfeb1c58b81900e037df79a82deb3d7fc4cd2a51f7d993a6ba9704d2d6ae1f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c599t-88cfeb1c58b81900e037df79a82deb3d7fc4cd2a51f7d993a6ba9704d2d6ae1f3 |
container_end_page | e0275156 |
container_issue | 10 |
container_start_page | e0275156 |
container_title | PloS one |
container_volume | 17 |
creator | Zhuang, Xuqiang Liu, Fang'ai Hou, Jian Hao, Jianhua Cai, Xiaohong |
description | Video question answering (Video-QA) is a subject undergoing intense study in Artificial Intelligence, which is one of the tasks which can evaluate such AI abilities. In this paper, we propose a Modality Attention Fusion framework with Hybrid Multi-head Self-attention (MAF-HMS). MAF-HMS focuses on the task of answering multiple-choice questions regarding a video-subtitle-QA representation by fusion of attention and self-attention between each modality. We use BERT to extract text features, and use Faster R-CNN to ex-tract visual features to provide a useful input representation for our model to answer questions. In addition, we have constructed a Modality Attention Fusion (MAF) framework for the attention fusion matrix from different modalities (video, subtitles, QA), and use a Hybrid Multi-headed Self-attention (HMS) to further determine the correct answer. Experiments on three separate scene datasets show our overall model outperforms the baseline methods by a large margin. Finally, we conducted extensive ablation studies to verify the various components of the network and demonstrate the effectiveness and advantages of our method over existing methods through question type and required modality experimental results. |
doi_str_mv | 10.1371/journal.pone.0275156 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2722285035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A721201458</galeid><doaj_id>oai_doaj_org_article_2d7ac731f1a849549b44bcfa03d0d5f0</doaj_id><sourcerecordid>A721201458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-88cfeb1c58b81900e037df79a82deb3d7fc4cd2a51f7d993a6ba9704d2d6ae1f3</originalsourceid><addsrcrecordid>eNqNkluL1DAYhosouK7-A8GCIHrRMYemaW6EZfEwsLLg6U5CmsNMhrSZTdLV-femTpWp7IXkIuHL873fgbconkKwgpjC1zs_hkG41d4PegUQJZA094ozyDCqGgTw_ZP3w-JRjDsACG6b5qz4_tEr4Ww6lCIlPSTrh9KMcbp6r7Qrf9i0LbeHLlhV9qNLttpqocqonalOUnwob63SvhwHpUNMYlB22DwuHhjhon4y3-fF13dvv1x-qK6u368vL64qSRhLVdtKozsoSdu1kAGgAabKUCZapHSHFTWylgoJAg1VjGHRdIJRUCukGqGhwefFs6Pu3vnI53VEjihCqCUAk0ysj4TyYsf3wfYiHLgXlv8O-LDhIiQrneZIUSEphgaKtmakZl1dd9IIgBVQxICs9WauNna9VjLvIAi3EF3-DHbLN_6WM4IbUrdZ4OUsEPzNqGPivY1SOycG7cdj3xhCUk99P_8HvXu6mdqIPIAdjM915STKLyiCCMCaTGVXd1D5KN1bmb1jbI4vEl4tEjKT9M-0EWOMfP350_-z19-W7IsTNvvJpW30bpysFJdgfQRl8DEGbf4uGQI-Wf_PNvhkfT5bH_8C8yD4Dg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722285035</pqid></control><display><type>article</type><title>Modality attention fusion model with hybrid multi-head self-attention for video understanding</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Zhuang, Xuqiang ; Liu, Fang'ai ; Hou, Jian ; Hao, Jianhua ; Cai, Xiaohong</creator><contributor>Saha, Sriparna</contributor><creatorcontrib>Zhuang, Xuqiang ; Liu, Fang'ai ; Hou, Jian ; Hao, Jianhua ; Cai, Xiaohong ; Saha, Sriparna</creatorcontrib><description>Video question answering (Video-QA) is a subject undergoing intense study in Artificial Intelligence, which is one of the tasks which can evaluate such AI abilities. In this paper, we propose a Modality Attention Fusion framework with Hybrid Multi-head Self-attention (MAF-HMS). MAF-HMS focuses on the task of answering multiple-choice questions regarding a video-subtitle-QA representation by fusion of attention and self-attention between each modality. We use BERT to extract text features, and use Faster R-CNN to ex-tract visual features to provide a useful input representation for our model to answer questions. In addition, we have constructed a Modality Attention Fusion (MAF) framework for the attention fusion matrix from different modalities (video, subtitles, QA), and use a Hybrid Multi-headed Self-attention (HMS) to further determine the correct answer. Experiments on three separate scene datasets show our overall model outperforms the baseline methods by a large margin. Finally, we conducted extensive ablation studies to verify the various components of the network and demonstrate the effectiveness and advantages of our method over existing methods through question type and required modality experimental results.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0275156</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Ablation ; Analysis ; Artificial intelligence ; Attention ; Biology and Life Sciences ; Comprehension ; Computer and Information Sciences ; Datasets ; Feature extraction ; Hypotheses ; Multiple choice ; Natural language ; Neural networks ; Questions ; Representations ; Semantics ; Social Sciences ; Subtitles & subtitling</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0275156-e0275156</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Zhuang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Zhuang et al 2022 Zhuang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-88cfeb1c58b81900e037df79a82deb3d7fc4cd2a51f7d993a6ba9704d2d6ae1f3</citedby><cites>FETCH-LOGICAL-c599t-88cfeb1c58b81900e037df79a82deb3d7fc4cd2a51f7d993a6ba9704d2d6ae1f3</cites><orcidid>0000-0003-1463-2319 ; 0000-0002-2010-278X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2722285035/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2722285035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><contributor>Saha, Sriparna</contributor><creatorcontrib>Zhuang, Xuqiang</creatorcontrib><creatorcontrib>Liu, Fang'ai</creatorcontrib><creatorcontrib>Hou, Jian</creatorcontrib><creatorcontrib>Hao, Jianhua</creatorcontrib><creatorcontrib>Cai, Xiaohong</creatorcontrib><title>Modality attention fusion model with hybrid multi-head self-attention for video understanding</title><title>PloS one</title><description>Video question answering (Video-QA) is a subject undergoing intense study in Artificial Intelligence, which is one of the tasks which can evaluate such AI abilities. In this paper, we propose a Modality Attention Fusion framework with Hybrid Multi-head Self-attention (MAF-HMS). MAF-HMS focuses on the task of answering multiple-choice questions regarding a video-subtitle-QA representation by fusion of attention and self-attention between each modality. We use BERT to extract text features, and use Faster R-CNN to ex-tract visual features to provide a useful input representation for our model to answer questions. In addition, we have constructed a Modality Attention Fusion (MAF) framework for the attention fusion matrix from different modalities (video, subtitles, QA), and use a Hybrid Multi-headed Self-attention (HMS) to further determine the correct answer. Experiments on three separate scene datasets show our overall model outperforms the baseline methods by a large margin. Finally, we conducted extensive ablation studies to verify the various components of the network and demonstrate the effectiveness and advantages of our method over existing methods through question type and required modality experimental results.</description><subject>Ablation</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Attention</subject><subject>Biology and Life Sciences</subject><subject>Comprehension</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Hypotheses</subject><subject>Multiple choice</subject><subject>Natural language</subject><subject>Neural networks</subject><subject>Questions</subject><subject>Representations</subject><subject>Semantics</subject><subject>Social Sciences</subject><subject>Subtitles & subtitling</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAYhosouK7-A8GCIHrRMYemaW6EZfEwsLLg6U5CmsNMhrSZTdLV-femTpWp7IXkIuHL873fgbconkKwgpjC1zs_hkG41d4PegUQJZA094ozyDCqGgTw_ZP3w-JRjDsACG6b5qz4_tEr4Ww6lCIlPSTrh9KMcbp6r7Qrf9i0LbeHLlhV9qNLttpqocqonalOUnwob63SvhwHpUNMYlB22DwuHhjhon4y3-fF13dvv1x-qK6u368vL64qSRhLVdtKozsoSdu1kAGgAabKUCZapHSHFTWylgoJAg1VjGHRdIJRUCukGqGhwefFs6Pu3vnI53VEjihCqCUAk0ysj4TyYsf3wfYiHLgXlv8O-LDhIiQrneZIUSEphgaKtmakZl1dd9IIgBVQxICs9WauNna9VjLvIAi3EF3-DHbLN_6WM4IbUrdZ4OUsEPzNqGPivY1SOycG7cdj3xhCUk99P_8HvXu6mdqIPIAdjM915STKLyiCCMCaTGVXd1D5KN1bmb1jbI4vEl4tEjKT9M-0EWOMfP350_-z19-W7IsTNvvJpW30bpysFJdgfQRl8DEGbf4uGQI-Wf_PNvhkfT5bH_8C8yD4Dg</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>Zhuang, Xuqiang</creator><creator>Liu, Fang'ai</creator><creator>Hou, Jian</creator><creator>Hao, Jianhua</creator><creator>Cai, Xiaohong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1463-2319</orcidid><orcidid>https://orcid.org/0000-0002-2010-278X</orcidid></search><sort><creationdate>20221006</creationdate><title>Modality attention fusion model with hybrid multi-head self-attention for video understanding</title><author>Zhuang, Xuqiang ; Liu, Fang'ai ; Hou, Jian ; Hao, Jianhua ; Cai, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-88cfeb1c58b81900e037df79a82deb3d7fc4cd2a51f7d993a6ba9704d2d6ae1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Attention</topic><topic>Biology and Life Sciences</topic><topic>Comprehension</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Hypotheses</topic><topic>Multiple choice</topic><topic>Natural language</topic><topic>Neural networks</topic><topic>Questions</topic><topic>Representations</topic><topic>Semantics</topic><topic>Social Sciences</topic><topic>Subtitles & subtitling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Xuqiang</creatorcontrib><creatorcontrib>Liu, Fang'ai</creatorcontrib><creatorcontrib>Hou, Jian</creatorcontrib><creatorcontrib>Hao, Jianhua</creatorcontrib><creatorcontrib>Cai, Xiaohong</creatorcontrib><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Xuqiang</au><au>Liu, Fang'ai</au><au>Hou, Jian</au><au>Hao, Jianhua</au><au>Cai, Xiaohong</au><au>Saha, Sriparna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modality attention fusion model with hybrid multi-head self-attention for video understanding</atitle><jtitle>PloS one</jtitle><date>2022-10-06</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0275156</spage><epage>e0275156</epage><pages>e0275156-e0275156</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Video question answering (Video-QA) is a subject undergoing intense study in Artificial Intelligence, which is one of the tasks which can evaluate such AI abilities. In this paper, we propose a Modality Attention Fusion framework with Hybrid Multi-head Self-attention (MAF-HMS). MAF-HMS focuses on the task of answering multiple-choice questions regarding a video-subtitle-QA representation by fusion of attention and self-attention between each modality. We use BERT to extract text features, and use Faster R-CNN to ex-tract visual features to provide a useful input representation for our model to answer questions. In addition, we have constructed a Modality Attention Fusion (MAF) framework for the attention fusion matrix from different modalities (video, subtitles, QA), and use a Hybrid Multi-headed Self-attention (HMS) to further determine the correct answer. Experiments on three separate scene datasets show our overall model outperforms the baseline methods by a large margin. Finally, we conducted extensive ablation studies to verify the various components of the network and demonstrate the effectiveness and advantages of our method over existing methods through question type and required modality experimental results.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0275156</doi><tpages>e0275156</tpages><orcidid>https://orcid.org/0000-0003-1463-2319</orcidid><orcidid>https://orcid.org/0000-0002-2010-278X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-10, Vol.17 (10), p.e0275156-e0275156 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2722285035 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Ablation Analysis Artificial intelligence Attention Biology and Life Sciences Comprehension Computer and Information Sciences Datasets Feature extraction Hypotheses Multiple choice Natural language Neural networks Questions Representations Semantics Social Sciences Subtitles & subtitling |
title | Modality attention fusion model with hybrid multi-head self-attention for video understanding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modality%20attention%20fusion%20model%20with%20hybrid%20multi-head%20self-attention%20for%20video%20understanding&rft.jtitle=PloS%20one&rft.au=Zhuang,%20Xuqiang&rft.date=2022-10-06&rft.volume=17&rft.issue=10&rft.spage=e0275156&rft.epage=e0275156&rft.pages=e0275156-e0275156&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0275156&rft_dat=%3Cgale_plos_%3EA721201458%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c599t-88cfeb1c58b81900e037df79a82deb3d7fc4cd2a51f7d993a6ba9704d2d6ae1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2722285035&rft_id=info:pmid/&rft_galeid=A721201458&rfr_iscdi=true |