Loading…
Monitoring and early warning of a metal mine tailings pond based on a deep learning bidirectional recurrent long and short memory network
The effective monitoring and early warning capability of metal mine tailings ponds can improve the associated safety risk management level. The infiltration line is an important core index of tailings pond stability. In this paper, a tailings pond monitoring and early warning system, which provides...
Saved in:
Published in: | PloS one 2022-10, Vol.17 (10), p.e0273073 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c622t-394e3d106ee0c63a7472ae7ad9b04538e35dacfecb6f7538d5f472e8f045fbce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c622t-394e3d106ee0c63a7472ae7ad9b04538e35dacfecb6f7538d5f472e8f045fbce3 |
container_end_page | |
container_issue | 10 |
container_start_page | e0273073 |
container_title | PloS one |
container_volume | 17 |
creator | Jing, Zhanjie Gao, Xiaohong |
description | The effective monitoring and early warning capability of metal mine tailings ponds can improve the associated safety risk management level. The infiltration line is an important core index of tailings pond stability. In this paper, a tailings pond monitoring and early warning system, which provides technical support for the design and daily management of tailings reservoir early warning systems, is constructed. Based on a deep learning bidirectional recurrent long and short memory network, an infiltration line prediction model with univariate input and an infiltration line prediction model with multivariate input are proposed. The data adopted are those from four monitoring points of the same cross-section at different positions and data from one adjacent internal lateral displacement and internal vertical displacement monitoring point. Using the adaptive moment estimation (Adam) optimization algorithm and the root mean square error (RMSE) model evaluation metric, the multilayer perceptron model, univariate input model, and multivariate input model are compared. This work shows that their RMSEs are 0.10611, 0.09966, and 0.11955, respectively. |
doi_str_mv | 10.1371/journal.pone.0273073 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2724592197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722244368</galeid><doaj_id>oai_doaj_org_article_bd3f3ce36e79459bb688599feeb349bf</doaj_id><sourcerecordid>A722244368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-394e3d106ee0c63a7472ae7ad9b04538e35dacfecb6f7538d5f472e8f045fbce3</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggsISG42CWxc_INUlVxWKmoEqdby4nHuy6OvbUdyj4Cb80sm1a7qBcoF3HG3__PeOLJsqdFPi9YU7y59GNw0s7X3sE8pw3LG3YvOy44o7Oa5uz-3vooexTjZZ5XrK3rh9kRqyltWp4fZ78_eWeSD8YtiXSKgAx2Q65lcNuI10SSAZK0ZDAOSJLGYjwSTKpIJyMo4h0yCmBNLEyyzigToE_GY4EEV2MI4BKxfsoSVz4kNB582BAH6dqHH4-zB1raCE-m90n27f27r2cfZ-cXHxZnp-ezHotOM8ZLYKrIa4C8r5lsyoZKaKTiXV7i-YBVSvYa-q7WDX6rSiMBrcZd3fXATrLnO9-19VFMXYyCNrSsOC14g8RiRygvL8U6mEGGjfDSiL8BH5ZChmR6C6JTTDM0raHhKO-6um0rzjVAx0reafR6O2UbuwFUj20I0h6YHu44sxJL_1PwqqZFRdHg1WQQ_NUIMYnBxB6slQ78ONXdFryoEH3xD3r36SZqKfEAxmmPefutqThtKKVlyeoWqfkdFD4KBtPjldMG4weC1wcCZBL8Sks5xigWXz7_P3vx_ZB9uceuQNq0it6O28sVD8FyB_bBxxhA3za5yMV2Ym66IbYTI6aJQdmz_R90K7oZEfYHL00TpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724592197</pqid></control><display><type>article</type><title>Monitoring and early warning of a metal mine tailings pond based on a deep learning bidirectional recurrent long and short memory network</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Jing, Zhanjie ; Gao, Xiaohong</creator><contributor>Mohammadzadeh, Ardashir</contributor><creatorcontrib>Jing, Zhanjie ; Gao, Xiaohong ; Mohammadzadeh, Ardashir</creatorcontrib><description>The effective monitoring and early warning capability of metal mine tailings ponds can improve the associated safety risk management level. The infiltration line is an important core index of tailings pond stability. In this paper, a tailings pond monitoring and early warning system, which provides technical support for the design and daily management of tailings reservoir early warning systems, is constructed. Based on a deep learning bidirectional recurrent long and short memory network, an infiltration line prediction model with univariate input and an infiltration line prediction model with multivariate input are proposed. The data adopted are those from four monitoring points of the same cross-section at different positions and data from one adjacent internal lateral displacement and internal vertical displacement monitoring point. Using the adaptive moment estimation (Adam) optimization algorithm and the root mean square error (RMSE) model evaluation metric, the multilayer perceptron model, univariate input model, and multivariate input model are compared. This work shows that their RMSEs are 0.10611, 0.09966, and 0.11955, respectively.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0273073</identifier><identifier>PMID: 36227890</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Biology and Life Sciences ; Computational linguistics ; Computer and Information Sciences ; Data processing ; Deep Learning ; Early warning systems ; Earth Sciences ; Earthquakes ; Emergency communications systems ; Environmental Monitoring ; Failure ; Fault diagnosis ; Infiltration ; Language processing ; Lateral displacement ; Machine learning ; Metals ; Mine tailings ; Mine wastes ; Mineral resources ; Modelling ; Monitoring ; Multilayer perceptrons ; Multivariate analysis ; Natural language interfaces ; Neural networks ; Optimization ; Physical Sciences ; Ponds ; Prediction models ; Rain ; Research and Analysis Methods ; Reservoir management ; Reservoirs ; Risk management ; Root-mean-square errors ; Safety management ; Shear strength ; Storm damage ; Tailings ; Technical services ; Time series ; Warning systems</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0273073</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Jing, Gao. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Jing, Gao 2022 Jing, Gao</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-394e3d106ee0c63a7472ae7ad9b04538e35dacfecb6f7538d5f472e8f045fbce3</citedby><cites>FETCH-LOGICAL-c622t-394e3d106ee0c63a7472ae7ad9b04538e35dacfecb6f7538d5f472e8f045fbce3</cites><orcidid>0000-0003-0288-4295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2724592197/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2724592197?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36227890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mohammadzadeh, Ardashir</contributor><creatorcontrib>Jing, Zhanjie</creatorcontrib><creatorcontrib>Gao, Xiaohong</creatorcontrib><title>Monitoring and early warning of a metal mine tailings pond based on a deep learning bidirectional recurrent long and short memory network</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The effective monitoring and early warning capability of metal mine tailings ponds can improve the associated safety risk management level. The infiltration line is an important core index of tailings pond stability. In this paper, a tailings pond monitoring and early warning system, which provides technical support for the design and daily management of tailings reservoir early warning systems, is constructed. Based on a deep learning bidirectional recurrent long and short memory network, an infiltration line prediction model with univariate input and an infiltration line prediction model with multivariate input are proposed. The data adopted are those from four monitoring points of the same cross-section at different positions and data from one adjacent internal lateral displacement and internal vertical displacement monitoring point. Using the adaptive moment estimation (Adam) optimization algorithm and the root mean square error (RMSE) model evaluation metric, the multilayer perceptron model, univariate input model, and multivariate input model are compared. This work shows that their RMSEs are 0.10611, 0.09966, and 0.11955, respectively.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Data processing</subject><subject>Deep Learning</subject><subject>Early warning systems</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Emergency communications systems</subject><subject>Environmental Monitoring</subject><subject>Failure</subject><subject>Fault diagnosis</subject><subject>Infiltration</subject><subject>Language processing</subject><subject>Lateral displacement</subject><subject>Machine learning</subject><subject>Metals</subject><subject>Mine tailings</subject><subject>Mine wastes</subject><subject>Mineral resources</subject><subject>Modelling</subject><subject>Monitoring</subject><subject>Multilayer perceptrons</subject><subject>Multivariate analysis</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Ponds</subject><subject>Prediction models</subject><subject>Rain</subject><subject>Research and Analysis Methods</subject><subject>Reservoir management</subject><subject>Reservoirs</subject><subject>Risk management</subject><subject>Root-mean-square errors</subject><subject>Safety management</subject><subject>Shear strength</subject><subject>Storm damage</subject><subject>Tailings</subject><subject>Technical services</subject><subject>Time series</subject><subject>Warning systems</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggsISG42CWxc_INUlVxWKmoEqdby4nHuy6OvbUdyj4Cb80sm1a7qBcoF3HG3__PeOLJsqdFPi9YU7y59GNw0s7X3sE8pw3LG3YvOy44o7Oa5uz-3vooexTjZZ5XrK3rh9kRqyltWp4fZ78_eWeSD8YtiXSKgAx2Q65lcNuI10SSAZK0ZDAOSJLGYjwSTKpIJyMo4h0yCmBNLEyyzigToE_GY4EEV2MI4BKxfsoSVz4kNB582BAH6dqHH4-zB1raCE-m90n27f27r2cfZ-cXHxZnp-ezHotOM8ZLYKrIa4C8r5lsyoZKaKTiXV7i-YBVSvYa-q7WDX6rSiMBrcZd3fXATrLnO9-19VFMXYyCNrSsOC14g8RiRygvL8U6mEGGjfDSiL8BH5ZChmR6C6JTTDM0raHhKO-6um0rzjVAx0reafR6O2UbuwFUj20I0h6YHu44sxJL_1PwqqZFRdHg1WQQ_NUIMYnBxB6slQ78ONXdFryoEH3xD3r36SZqKfEAxmmPefutqThtKKVlyeoWqfkdFD4KBtPjldMG4weC1wcCZBL8Sks5xigWXz7_P3vx_ZB9uceuQNq0it6O28sVD8FyB_bBxxhA3za5yMV2Ym66IbYTI6aJQdmz_R90K7oZEfYHL00TpQ</recordid><startdate>20221013</startdate><enddate>20221013</enddate><creator>Jing, Zhanjie</creator><creator>Gao, Xiaohong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0288-4295</orcidid></search><sort><creationdate>20221013</creationdate><title>Monitoring and early warning of a metal mine tailings pond based on a deep learning bidirectional recurrent long and short memory network</title><author>Jing, Zhanjie ; Gao, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-394e3d106ee0c63a7472ae7ad9b04538e35dacfecb6f7538d5f472e8f045fbce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Data processing</topic><topic>Deep Learning</topic><topic>Early warning systems</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Emergency communications systems</topic><topic>Environmental Monitoring</topic><topic>Failure</topic><topic>Fault diagnosis</topic><topic>Infiltration</topic><topic>Language processing</topic><topic>Lateral displacement</topic><topic>Machine learning</topic><topic>Metals</topic><topic>Mine tailings</topic><topic>Mine wastes</topic><topic>Mineral resources</topic><topic>Modelling</topic><topic>Monitoring</topic><topic>Multilayer perceptrons</topic><topic>Multivariate analysis</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Ponds</topic><topic>Prediction models</topic><topic>Rain</topic><topic>Research and Analysis Methods</topic><topic>Reservoir management</topic><topic>Reservoirs</topic><topic>Risk management</topic><topic>Root-mean-square errors</topic><topic>Safety management</topic><topic>Shear strength</topic><topic>Storm damage</topic><topic>Tailings</topic><topic>Technical services</topic><topic>Time series</topic><topic>Warning systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Zhanjie</creatorcontrib><creatorcontrib>Gao, Xiaohong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Zhanjie</au><au>Gao, Xiaohong</au><au>Mohammadzadeh, Ardashir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring and early warning of a metal mine tailings pond based on a deep learning bidirectional recurrent long and short memory network</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2022-10-13</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0273073</spage><pages>e0273073-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The effective monitoring and early warning capability of metal mine tailings ponds can improve the associated safety risk management level. The infiltration line is an important core index of tailings pond stability. In this paper, a tailings pond monitoring and early warning system, which provides technical support for the design and daily management of tailings reservoir early warning systems, is constructed. Based on a deep learning bidirectional recurrent long and short memory network, an infiltration line prediction model with univariate input and an infiltration line prediction model with multivariate input are proposed. The data adopted are those from four monitoring points of the same cross-section at different positions and data from one adjacent internal lateral displacement and internal vertical displacement monitoring point. Using the adaptive moment estimation (Adam) optimization algorithm and the root mean square error (RMSE) model evaluation metric, the multilayer perceptron model, univariate input model, and multivariate input model are compared. This work shows that their RMSEs are 0.10611, 0.09966, and 0.11955, respectively.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36227890</pmid><doi>10.1371/journal.pone.0273073</doi><tpages>e0273073</tpages><orcidid>https://orcid.org/0000-0003-0288-4295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-10, Vol.17 (10), p.e0273073 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2724592197 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Analysis Artificial intelligence Biology and Life Sciences Computational linguistics Computer and Information Sciences Data processing Deep Learning Early warning systems Earth Sciences Earthquakes Emergency communications systems Environmental Monitoring Failure Fault diagnosis Infiltration Language processing Lateral displacement Machine learning Metals Mine tailings Mine wastes Mineral resources Modelling Monitoring Multilayer perceptrons Multivariate analysis Natural language interfaces Neural networks Optimization Physical Sciences Ponds Prediction models Rain Research and Analysis Methods Reservoir management Reservoirs Risk management Root-mean-square errors Safety management Shear strength Storm damage Tailings Technical services Time series Warning systems |
title | Monitoring and early warning of a metal mine tailings pond based on a deep learning bidirectional recurrent long and short memory network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20and%20early%20warning%20of%20a%20metal%20mine%20tailings%20pond%20based%20on%20a%20deep%20learning%20bidirectional%20recurrent%20long%20and%20short%20memory%20network&rft.jtitle=PloS%20one&rft.au=Jing,%20Zhanjie&rft.date=2022-10-13&rft.volume=17&rft.issue=10&rft.spage=e0273073&rft.pages=e0273073-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0273073&rft_dat=%3Cgale_plos_%3EA722244368%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-394e3d106ee0c63a7472ae7ad9b04538e35dacfecb6f7538d5f472e8f045fbce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724592197&rft_id=info:pmid/36227890&rft_galeid=A722244368&rfr_iscdi=true |