Loading…
CBP/p300 activation promotes axon growth, sprouting, and synaptic plasticity in chronic experimental spinal cord injury with severe disability
The interruption of spinal circuitry following spinal cord injury (SCI) disrupts neural activity and is followed by a failure to mount an effective regenerative response resulting in permanent neurological disability. Functional recovery requires the enhancement of axonal and synaptic plasticity of...
Saved in:
Published in: | PLoS biology 2022-09, Vol.20 (9), p.e3001310-e3001310 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c602t-8e3a713a6be5ac1129e23f399a97c9e77add514eab959550af05822436f9967e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c602t-8e3a713a6be5ac1129e23f399a97c9e77add514eab959550af05822436f9967e3 |
container_end_page | e3001310 |
container_issue | 9 |
container_start_page | e3001310 |
container_title | PLoS biology |
container_volume | 20 |
creator | Müller, Franziska De Virgiliis, Francesco Kong, Guiping Zhou, Luming Serger, Elisabeth Chadwick, Jessica Sanchez-Vassopoulos, Alexandros Singh, Akash Kumar Eswaramoorthy, Muthusamy Kundu, Tapas K Di Giovanni, Simone |
description | The interruption of spinal circuitry following spinal cord injury (SCI) disrupts neural activity and is followed by a failure to mount an effective regenerative response resulting in permanent neurological disability. Functional recovery requires the enhancement of axonal and synaptic plasticity of spared as well as injured fibres, which need to sprout and/or regenerate to form new connections. Here, we have investigated whether the epigenetic stimulation of the regenerative gene expression program can overcome the current inability to promote neurological recovery in chronic SCI with severe disability. We delivered the CBP/p300 activator CSP-TTK21 or vehicle CSP weekly between week 12 and 22 following a transection model of SCI in mice housed in an enriched environment. Data analysis showed that CSP-TTK21 enhanced classical regenerative signalling in dorsal root ganglia sensory but not cortical motor neurons, stimulated motor and sensory axon growth, sprouting, and synaptic plasticity, but failed to promote neurological sensorimotor recovery. This work provides direct evidence that clinically suitable pharmacological CBP/p300 activation can promote the expression of regeneration-associated genes and axonal growth in a chronic SCI with severe neurological disability. |
doi_str_mv | 10.1371/journal.pbio.3001310 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2725271366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A721753471</galeid><doaj_id>oai_doaj_org_article_e0a0bb5bf34049b1a2d42e9cc9d97d80</doaj_id><sourcerecordid>A721753471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-8e3a713a6be5ac1129e23f399a97c9e77add514eab959550af05822436f9967e3</originalsourceid><addsrcrecordid>eNqVk9uO0zAQhiMEEkvhDZCwxA1I267tHH2DtFQcKq1YxOnWmjiT1FUaZ22n274Ez4xDA6JoL0C-sD3-5vf8I00UPWV0weKcXWzMYDtoF32pzSKmlMWM3ovOWJqk87wo0vt_nB9Gj5zbUMq54MVZ9H35-uNFH3IIKK934LXpSG_N1nh0BPbh1lhz69fnxIXw4HXXnBPoKuIOHfReK9K34MKu_YHojqi1NV2I4r5Hq7fYeWhDqg71EWVsFZjNYA_kVvs1cbhDi6TSDkrdBoXH0YMaWodPpn0WfX375svy_fzq-t1qeXk1Vxnlfl5gDDmLISsxBcUYF8jjOhYCRK4E5jlUVcoShFKkIk0p1DQtOE_irBYiyzGeRc-Oun1rnJz65yTPecqDcJYFYnUkKgMb2QcrYA_SgJY_A8Y2Emyw3aJECrQs07KOE5qIkgGvEo5CKVGJvCpo0Ho1_TaUW6xUaIqF9kT09KXTa9mYnRRJUeTFWMyLScCamwGdl1vtFLYtdGiGsW6W0SJYG9Hnf6F3u5uoBoIB3dUm_KtGUXmZc5ancRLAWbS4gwqrwq1WpsNah_hJwsuThMB43PsGBufk6vOn_2A__Dt7_e2UTY6sssY5i_XvPjMqx3H51RA5joucxiX-AQaCCf0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725271366</pqid></control><display><type>article</type><title>CBP/p300 activation promotes axon growth, sprouting, and synaptic plasticity in chronic experimental spinal cord injury with severe disability</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Müller, Franziska ; De Virgiliis, Francesco ; Kong, Guiping ; Zhou, Luming ; Serger, Elisabeth ; Chadwick, Jessica ; Sanchez-Vassopoulos, Alexandros ; Singh, Akash Kumar ; Eswaramoorthy, Muthusamy ; Kundu, Tapas K ; Di Giovanni, Simone</creator><contributor>Smith, Cody J.</contributor><creatorcontrib>Müller, Franziska ; De Virgiliis, Francesco ; Kong, Guiping ; Zhou, Luming ; Serger, Elisabeth ; Chadwick, Jessica ; Sanchez-Vassopoulos, Alexandros ; Singh, Akash Kumar ; Eswaramoorthy, Muthusamy ; Kundu, Tapas K ; Di Giovanni, Simone ; Smith, Cody J.</creatorcontrib><description>The interruption of spinal circuitry following spinal cord injury (SCI) disrupts neural activity and is followed by a failure to mount an effective regenerative response resulting in permanent neurological disability. Functional recovery requires the enhancement of axonal and synaptic plasticity of spared as well as injured fibres, which need to sprout and/or regenerate to form new connections. Here, we have investigated whether the epigenetic stimulation of the regenerative gene expression program can overcome the current inability to promote neurological recovery in chronic SCI with severe disability. We delivered the CBP/p300 activator CSP-TTK21 or vehicle CSP weekly between week 12 and 22 following a transection model of SCI in mice housed in an enriched environment. Data analysis showed that CSP-TTK21 enhanced classical regenerative signalling in dorsal root ganglia sensory but not cortical motor neurons, stimulated motor and sensory axon growth, sprouting, and synaptic plasticity, but failed to promote neurological sensorimotor recovery. This work provides direct evidence that clinically suitable pharmacological CBP/p300 activation can promote the expression of regeneration-associated genes and axonal growth in a chronic SCI with severe neurological disability.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3001310</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Axon sprouting ; Axonal plasticity ; Axons ; Biology and Life Sciences ; Circuits ; Contusions ; Data analysis ; Development and progression ; Disability ; Dorsal root ganglia ; Enrichment ; Epigenetics ; Fibers ; Ganglia ; Gene expression ; Health aspects ; Hypotheses ; Medicine and Health Sciences ; Motor neurons ; Nanoparticles ; Neurological complications ; Neuroplasticity ; Physiology ; Plasticity ; Preregistered ; Recovery ; Recovery of function ; Regeneration ; Rehabilitation ; Research and Analysis Methods ; Sensorimotor system ; Sensory neurons ; Social Sciences ; Spinal cord injuries ; Spinal plasticity ; Synaptic plasticity</subject><ispartof>PLoS biology, 2022-09, Vol.20 (9), p.e3001310-e3001310</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Müller et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Müller et al 2022 Müller et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-8e3a713a6be5ac1129e23f399a97c9e77add514eab959550af05822436f9967e3</citedby><cites>FETCH-LOGICAL-c602t-8e3a713a6be5ac1129e23f399a97c9e77add514eab959550af05822436f9967e3</cites><orcidid>0000-0003-3154-5399 ; 0000-0001-7287-7707 ; 0000-0002-7460-2886 ; 0000-0001-7790-214X ; 0000-0001-7170-1013 ; 0000-0002-7284-1744 ; 0000-0002-9990-6309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2725271366/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2725271366?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>Smith, Cody J.</contributor><creatorcontrib>Müller, Franziska</creatorcontrib><creatorcontrib>De Virgiliis, Francesco</creatorcontrib><creatorcontrib>Kong, Guiping</creatorcontrib><creatorcontrib>Zhou, Luming</creatorcontrib><creatorcontrib>Serger, Elisabeth</creatorcontrib><creatorcontrib>Chadwick, Jessica</creatorcontrib><creatorcontrib>Sanchez-Vassopoulos, Alexandros</creatorcontrib><creatorcontrib>Singh, Akash Kumar</creatorcontrib><creatorcontrib>Eswaramoorthy, Muthusamy</creatorcontrib><creatorcontrib>Kundu, Tapas K</creatorcontrib><creatorcontrib>Di Giovanni, Simone</creatorcontrib><title>CBP/p300 activation promotes axon growth, sprouting, and synaptic plasticity in chronic experimental spinal cord injury with severe disability</title><title>PLoS biology</title><description>The interruption of spinal circuitry following spinal cord injury (SCI) disrupts neural activity and is followed by a failure to mount an effective regenerative response resulting in permanent neurological disability. Functional recovery requires the enhancement of axonal and synaptic plasticity of spared as well as injured fibres, which need to sprout and/or regenerate to form new connections. Here, we have investigated whether the epigenetic stimulation of the regenerative gene expression program can overcome the current inability to promote neurological recovery in chronic SCI with severe disability. We delivered the CBP/p300 activator CSP-TTK21 or vehicle CSP weekly between week 12 and 22 following a transection model of SCI in mice housed in an enriched environment. Data analysis showed that CSP-TTK21 enhanced classical regenerative signalling in dorsal root ganglia sensory but not cortical motor neurons, stimulated motor and sensory axon growth, sprouting, and synaptic plasticity, but failed to promote neurological sensorimotor recovery. This work provides direct evidence that clinically suitable pharmacological CBP/p300 activation can promote the expression of regeneration-associated genes and axonal growth in a chronic SCI with severe neurological disability.</description><subject>Axon sprouting</subject><subject>Axonal plasticity</subject><subject>Axons</subject><subject>Biology and Life Sciences</subject><subject>Circuits</subject><subject>Contusions</subject><subject>Data analysis</subject><subject>Development and progression</subject><subject>Disability</subject><subject>Dorsal root ganglia</subject><subject>Enrichment</subject><subject>Epigenetics</subject><subject>Fibers</subject><subject>Ganglia</subject><subject>Gene expression</subject><subject>Health aspects</subject><subject>Hypotheses</subject><subject>Medicine and Health Sciences</subject><subject>Motor neurons</subject><subject>Nanoparticles</subject><subject>Neurological complications</subject><subject>Neuroplasticity</subject><subject>Physiology</subject><subject>Plasticity</subject><subject>Preregistered</subject><subject>Recovery</subject><subject>Recovery of function</subject><subject>Regeneration</subject><subject>Rehabilitation</subject><subject>Research and Analysis Methods</subject><subject>Sensorimotor system</subject><subject>Sensory neurons</subject><subject>Social Sciences</subject><subject>Spinal cord injuries</subject><subject>Spinal plasticity</subject><subject>Synaptic plasticity</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9uO0zAQhiMEEkvhDZCwxA1I267tHH2DtFQcKq1YxOnWmjiT1FUaZ22n274Ez4xDA6JoL0C-sD3-5vf8I00UPWV0weKcXWzMYDtoF32pzSKmlMWM3ovOWJqk87wo0vt_nB9Gj5zbUMq54MVZ9H35-uNFH3IIKK934LXpSG_N1nh0BPbh1lhz69fnxIXw4HXXnBPoKuIOHfReK9K34MKu_YHojqi1NV2I4r5Hq7fYeWhDqg71EWVsFZjNYA_kVvs1cbhDi6TSDkrdBoXH0YMaWodPpn0WfX375svy_fzq-t1qeXk1Vxnlfl5gDDmLISsxBcUYF8jjOhYCRK4E5jlUVcoShFKkIk0p1DQtOE_irBYiyzGeRc-Oun1rnJz65yTPecqDcJYFYnUkKgMb2QcrYA_SgJY_A8Y2Emyw3aJECrQs07KOE5qIkgGvEo5CKVGJvCpo0Ho1_TaUW6xUaIqF9kT09KXTa9mYnRRJUeTFWMyLScCamwGdl1vtFLYtdGiGsW6W0SJYG9Hnf6F3u5uoBoIB3dUm_KtGUXmZc5ancRLAWbS4gwqrwq1WpsNah_hJwsuThMB43PsGBufk6vOn_2A__Dt7_e2UTY6sssY5i_XvPjMqx3H51RA5joucxiX-AQaCCf0</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Müller, Franziska</creator><creator>De Virgiliis, Francesco</creator><creator>Kong, Guiping</creator><creator>Zhou, Luming</creator><creator>Serger, Elisabeth</creator><creator>Chadwick, Jessica</creator><creator>Sanchez-Vassopoulos, Alexandros</creator><creator>Singh, Akash Kumar</creator><creator>Eswaramoorthy, Muthusamy</creator><creator>Kundu, Tapas K</creator><creator>Di Giovanni, Simone</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-3154-5399</orcidid><orcidid>https://orcid.org/0000-0001-7287-7707</orcidid><orcidid>https://orcid.org/0000-0002-7460-2886</orcidid><orcidid>https://orcid.org/0000-0001-7790-214X</orcidid><orcidid>https://orcid.org/0000-0001-7170-1013</orcidid><orcidid>https://orcid.org/0000-0002-7284-1744</orcidid><orcidid>https://orcid.org/0000-0002-9990-6309</orcidid></search><sort><creationdate>20220920</creationdate><title>CBP/p300 activation promotes axon growth, sprouting, and synaptic plasticity in chronic experimental spinal cord injury with severe disability</title><author>Müller, Franziska ; De Virgiliis, Francesco ; Kong, Guiping ; Zhou, Luming ; Serger, Elisabeth ; Chadwick, Jessica ; Sanchez-Vassopoulos, Alexandros ; Singh, Akash Kumar ; Eswaramoorthy, Muthusamy ; Kundu, Tapas K ; Di Giovanni, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-8e3a713a6be5ac1129e23f399a97c9e77add514eab959550af05822436f9967e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Axon sprouting</topic><topic>Axonal plasticity</topic><topic>Axons</topic><topic>Biology and Life Sciences</topic><topic>Circuits</topic><topic>Contusions</topic><topic>Data analysis</topic><topic>Development and progression</topic><topic>Disability</topic><topic>Dorsal root ganglia</topic><topic>Enrichment</topic><topic>Epigenetics</topic><topic>Fibers</topic><topic>Ganglia</topic><topic>Gene expression</topic><topic>Health aspects</topic><topic>Hypotheses</topic><topic>Medicine and Health Sciences</topic><topic>Motor neurons</topic><topic>Nanoparticles</topic><topic>Neurological complications</topic><topic>Neuroplasticity</topic><topic>Physiology</topic><topic>Plasticity</topic><topic>Preregistered</topic><topic>Recovery</topic><topic>Recovery of function</topic><topic>Regeneration</topic><topic>Rehabilitation</topic><topic>Research and Analysis Methods</topic><topic>Sensorimotor system</topic><topic>Sensory neurons</topic><topic>Social Sciences</topic><topic>Spinal cord injuries</topic><topic>Spinal plasticity</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Franziska</creatorcontrib><creatorcontrib>De Virgiliis, Francesco</creatorcontrib><creatorcontrib>Kong, Guiping</creatorcontrib><creatorcontrib>Zhou, Luming</creatorcontrib><creatorcontrib>Serger, Elisabeth</creatorcontrib><creatorcontrib>Chadwick, Jessica</creatorcontrib><creatorcontrib>Sanchez-Vassopoulos, Alexandros</creatorcontrib><creatorcontrib>Singh, Akash Kumar</creatorcontrib><creatorcontrib>Eswaramoorthy, Muthusamy</creatorcontrib><creatorcontrib>Kundu, Tapas K</creatorcontrib><creatorcontrib>Di Giovanni, Simone</creatorcontrib><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Franziska</au><au>De Virgiliis, Francesco</au><au>Kong, Guiping</au><au>Zhou, Luming</au><au>Serger, Elisabeth</au><au>Chadwick, Jessica</au><au>Sanchez-Vassopoulos, Alexandros</au><au>Singh, Akash Kumar</au><au>Eswaramoorthy, Muthusamy</au><au>Kundu, Tapas K</au><au>Di Giovanni, Simone</au><au>Smith, Cody J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CBP/p300 activation promotes axon growth, sprouting, and synaptic plasticity in chronic experimental spinal cord injury with severe disability</atitle><jtitle>PLoS biology</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>e3001310</spage><epage>e3001310</epage><pages>e3001310-e3001310</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The interruption of spinal circuitry following spinal cord injury (SCI) disrupts neural activity and is followed by a failure to mount an effective regenerative response resulting in permanent neurological disability. Functional recovery requires the enhancement of axonal and synaptic plasticity of spared as well as injured fibres, which need to sprout and/or regenerate to form new connections. Here, we have investigated whether the epigenetic stimulation of the regenerative gene expression program can overcome the current inability to promote neurological recovery in chronic SCI with severe disability. We delivered the CBP/p300 activator CSP-TTK21 or vehicle CSP weekly between week 12 and 22 following a transection model of SCI in mice housed in an enriched environment. Data analysis showed that CSP-TTK21 enhanced classical regenerative signalling in dorsal root ganglia sensory but not cortical motor neurons, stimulated motor and sensory axon growth, sprouting, and synaptic plasticity, but failed to promote neurological sensorimotor recovery. This work provides direct evidence that clinically suitable pharmacological CBP/p300 activation can promote the expression of regeneration-associated genes and axonal growth in a chronic SCI with severe neurological disability.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pbio.3001310</doi><orcidid>https://orcid.org/0000-0003-3154-5399</orcidid><orcidid>https://orcid.org/0000-0001-7287-7707</orcidid><orcidid>https://orcid.org/0000-0002-7460-2886</orcidid><orcidid>https://orcid.org/0000-0001-7790-214X</orcidid><orcidid>https://orcid.org/0000-0001-7170-1013</orcidid><orcidid>https://orcid.org/0000-0002-7284-1744</orcidid><orcidid>https://orcid.org/0000-0002-9990-6309</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2022-09, Vol.20 (9), p.e3001310-e3001310 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2725271366 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Axon sprouting Axonal plasticity Axons Biology and Life Sciences Circuits Contusions Data analysis Development and progression Disability Dorsal root ganglia Enrichment Epigenetics Fibers Ganglia Gene expression Health aspects Hypotheses Medicine and Health Sciences Motor neurons Nanoparticles Neurological complications Neuroplasticity Physiology Plasticity Preregistered Recovery Recovery of function Regeneration Rehabilitation Research and Analysis Methods Sensorimotor system Sensory neurons Social Sciences Spinal cord injuries Spinal plasticity Synaptic plasticity |
title | CBP/p300 activation promotes axon growth, sprouting, and synaptic plasticity in chronic experimental spinal cord injury with severe disability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CBP/p300%20activation%20promotes%20axon%20growth,%20sprouting,%20and%20synaptic%20plasticity%20in%20chronic%20experimental%20spinal%20cord%20injury%20with%20severe%20disability&rft.jtitle=PLoS%20biology&rft.au=M%C3%BCller,%20Franziska&rft.date=2022-09-20&rft.volume=20&rft.issue=9&rft.spage=e3001310&rft.epage=e3001310&rft.pages=e3001310-e3001310&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3001310&rft_dat=%3Cgale_plos_%3EA721753471%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c602t-8e3a713a6be5ac1129e23f399a97c9e77add514eab959550af05822436f9967e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725271366&rft_id=info:pmid/&rft_galeid=A721753471&rfr_iscdi=true |