Loading…
Unique estimation in EEG analysis by the ordering ICA
Independent Component Analysis (ICA) is a method for solving blind source separation problems. Because ICA only needs weak assumptions to estimate the unknown sources from only the observed signals, it is suitable for Electroencephalography (EEG) analysis. A serious disadvantage of the traditional I...
Saved in:
Published in: | PloS one 2022-10, Vol.17 (10), p.e0276680-e0276680 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c614t-36e6ce83c4d077b20940a6618d57a1e15537a7978cf8d6fc1ef324ae295f0d413 |
container_end_page | e0276680 |
container_issue | 10 |
container_start_page | e0276680 |
container_title | PloS one |
container_volume | 17 |
creator | Matsuda, Yoshitatsu Yamaguchi, Kazunori |
description | Independent Component Analysis (ICA) is a method for solving blind source separation problems. Because ICA only needs weak assumptions to estimate the unknown sources from only the observed signals, it is suitable for Electroencephalography (EEG) analysis. A serious disadvantage of the traditional ICA algorithms is that their results often fluctuate and do not converge to the unique and globally optimal solution at each run. It is because there are many local optima and permutation ambiguities. We have recently proposed a new ICA algorithm named the ordering ICA, a simple extension of Fast ICA. The ordering ICA is theoretically guaranteed to extract the independent components in the unique order and avoids the local optima in practice. This paper investigated the usefulness of the ordering ICA in EEG analysis. Experiments showed that the ordering ICA could give unique solutions for the signals with large non-Gaussianity, and the ease of parallelization could reduce computation time. |
doi_str_mv | 10.1371/journal.pone.0276680 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2728052916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723878556</galeid><doaj_id>oai_doaj_org_article_3707d44b614348b1be05d09e113a4188</doaj_id><sourcerecordid>A723878556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c614t-36e6ce83c4d077b20940a6618d57a1e15537a7978cf8d6fc1ef324ae295f0d413</originalsourceid><addsrcrecordid>eNqNkluL1DAUx4so7kW_gWBBkPVhxlyaS18WlmVcBxYW1PU1pOlpJ0OnGZNUnG9vulNlK_sgeUg455f_ufDPsjcYLTEV-OPWDb7X3XLvelgiIjiX6Fl2iktKFpwg-vzR-yQ7C2GLEKOS85fZCeVElESw04zd9_bHADmEaHc6Wtfnts9Xq5tcJ_FDsCGvDnncQO58Dd72bb6-vnqVvWh0F-D1dJ9n959W364_L27vblL6dmE4LuKCcuAGJDVFjYSoCCoLpDnHsmZCY8CMUaFFKaRpZM0bg6GhpNBAStagusD0PHt71N13Lqhp4qCIIBIxUmKeiPWRqJ3eqr1PQ_iDctqqh4DzrdI-WtOBogKJuiiq1BotZIUrQKxGJWBMdYGlTFqXU7Wh2kFtoI9edzPReaa3G9W6n6pkJUacJoGLScC7tNQQ1c4GA12ne3DDse9UnDyg7_5Bn55uolqdBrB941JdM4qqK0GoFJKxkVo-QaVTw86aZI_Gpvjsw4fZh8RE-BVbPYSg1l-__D97933Ovn_EbkB3cRNcN4y2CnOwOILGuxA8NH-XjJEa3f1nG2p0t5rcTX8DtyfnJw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728052916</pqid></control><display><type>article</type><title>Unique estimation in EEG analysis by the ordering ICA</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Matsuda, Yoshitatsu ; Yamaguchi, Kazunori</creator><contributor>Zhang, Qichun</contributor><creatorcontrib>Matsuda, Yoshitatsu ; Yamaguchi, Kazunori ; Zhang, Qichun</creatorcontrib><description>Independent Component Analysis (ICA) is a method for solving blind source separation problems. Because ICA only needs weak assumptions to estimate the unknown sources from only the observed signals, it is suitable for Electroencephalography (EEG) analysis. A serious disadvantage of the traditional ICA algorithms is that their results often fluctuate and do not converge to the unique and globally optimal solution at each run. It is because there are many local optima and permutation ambiguities. We have recently proposed a new ICA algorithm named the ordering ICA, a simple extension of Fast ICA. The ordering ICA is theoretically guaranteed to extract the independent components in the unique order and avoids the local optima in practice. This paper investigated the usefulness of the ordering ICA in EEG analysis. Experiments showed that the ordering ICA could give unique solutions for the signals with large non-Gaussianity, and the ease of parallelization could reduce computation time.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276680</identifier><identifier>PMID: 36279275</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; EEG ; Electroencephalography ; Estimates ; Health aspects ; Independent component analysis ; Kurtosis ; Medicine and Health Sciences ; Methods ; Optimization ; Parallel processing ; Permutations ; Physical Sciences ; Principal components analysis ; Research and Analysis Methods ; Signal processing ; Uniqueness</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0276680-e0276680</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Matsuda, Yamaguchi. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Matsuda, Yamaguchi 2022 Matsuda, Yamaguchi</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c614t-36e6ce83c4d077b20940a6618d57a1e15537a7978cf8d6fc1ef324ae295f0d413</cites><orcidid>0000-0002-0056-0185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728052916/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728052916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><contributor>Zhang, Qichun</contributor><creatorcontrib>Matsuda, Yoshitatsu</creatorcontrib><creatorcontrib>Yamaguchi, Kazunori</creatorcontrib><title>Unique estimation in EEG analysis by the ordering ICA</title><title>PloS one</title><description>Independent Component Analysis (ICA) is a method for solving blind source separation problems. Because ICA only needs weak assumptions to estimate the unknown sources from only the observed signals, it is suitable for Electroencephalography (EEG) analysis. A serious disadvantage of the traditional ICA algorithms is that their results often fluctuate and do not converge to the unique and globally optimal solution at each run. It is because there are many local optima and permutation ambiguities. We have recently proposed a new ICA algorithm named the ordering ICA, a simple extension of Fast ICA. The ordering ICA is theoretically guaranteed to extract the independent components in the unique order and avoids the local optima in practice. This paper investigated the usefulness of the ordering ICA in EEG analysis. Experiments showed that the ordering ICA could give unique solutions for the signals with large non-Gaussianity, and the ease of parallelization could reduce computation time.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Estimates</subject><subject>Health aspects</subject><subject>Independent component analysis</subject><subject>Kurtosis</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Permutations</subject><subject>Physical Sciences</subject><subject>Principal components analysis</subject><subject>Research and Analysis Methods</subject><subject>Signal processing</subject><subject>Uniqueness</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUx4so7kW_gWBBkPVhxlyaS18WlmVcBxYW1PU1pOlpJ0OnGZNUnG9vulNlK_sgeUg455f_ufDPsjcYLTEV-OPWDb7X3XLvelgiIjiX6Fl2iktKFpwg-vzR-yQ7C2GLEKOS85fZCeVElESw04zd9_bHADmEaHc6Wtfnts9Xq5tcJ_FDsCGvDnncQO58Dd72bb6-vnqVvWh0F-D1dJ9n959W364_L27vblL6dmE4LuKCcuAGJDVFjYSoCCoLpDnHsmZCY8CMUaFFKaRpZM0bg6GhpNBAStagusD0PHt71N13Lqhp4qCIIBIxUmKeiPWRqJ3eqr1PQ_iDctqqh4DzrdI-WtOBogKJuiiq1BotZIUrQKxGJWBMdYGlTFqXU7Wh2kFtoI9edzPReaa3G9W6n6pkJUacJoGLScC7tNQQ1c4GA12ne3DDse9UnDyg7_5Bn55uolqdBrB941JdM4qqK0GoFJKxkVo-QaVTw86aZI_Gpvjsw4fZh8RE-BVbPYSg1l-__D97933Ovn_EbkB3cRNcN4y2CnOwOILGuxA8NH-XjJEa3f1nG2p0t5rcTX8DtyfnJw</recordid><startdate>20221024</startdate><enddate>20221024</enddate><creator>Matsuda, Yoshitatsu</creator><creator>Yamaguchi, Kazunori</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0056-0185</orcidid></search><sort><creationdate>20221024</creationdate><title>Unique estimation in EEG analysis by the ordering ICA</title><author>Matsuda, Yoshitatsu ; Yamaguchi, Kazunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c614t-36e6ce83c4d077b20940a6618d57a1e15537a7978cf8d6fc1ef324ae295f0d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Estimates</topic><topic>Health aspects</topic><topic>Independent component analysis</topic><topic>Kurtosis</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Permutations</topic><topic>Physical Sciences</topic><topic>Principal components analysis</topic><topic>Research and Analysis Methods</topic><topic>Signal processing</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuda, Yoshitatsu</creatorcontrib><creatorcontrib>Yamaguchi, Kazunori</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuda, Yoshitatsu</au><au>Yamaguchi, Kazunori</au><au>Zhang, Qichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique estimation in EEG analysis by the ordering ICA</atitle><jtitle>PloS one</jtitle><date>2022-10-24</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0276680</spage><epage>e0276680</epage><pages>e0276680-e0276680</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Independent Component Analysis (ICA) is a method for solving blind source separation problems. Because ICA only needs weak assumptions to estimate the unknown sources from only the observed signals, it is suitable for Electroencephalography (EEG) analysis. A serious disadvantage of the traditional ICA algorithms is that their results often fluctuate and do not converge to the unique and globally optimal solution at each run. It is because there are many local optima and permutation ambiguities. We have recently proposed a new ICA algorithm named the ordering ICA, a simple extension of Fast ICA. The ordering ICA is theoretically guaranteed to extract the independent components in the unique order and avoids the local optima in practice. This paper investigated the usefulness of the ordering ICA in EEG analysis. Experiments showed that the ordering ICA could give unique solutions for the signals with large non-Gaussianity, and the ease of parallelization could reduce computation time.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36279275</pmid><doi>10.1371/journal.pone.0276680</doi><tpages>e0276680</tpages><orcidid>https://orcid.org/0000-0002-0056-0185</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-10, Vol.17 (10), p.e0276680-e0276680 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2728052916 |
source | ProQuest - Publicly Available Content Database; PubMed Central |
subjects | Algorithms Analysis Biology and Life Sciences EEG Electroencephalography Estimates Health aspects Independent component analysis Kurtosis Medicine and Health Sciences Methods Optimization Parallel processing Permutations Physical Sciences Principal components analysis Research and Analysis Methods Signal processing Uniqueness |
title | Unique estimation in EEG analysis by the ordering ICA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20estimation%20in%20EEG%20analysis%20by%20the%20ordering%20ICA&rft.jtitle=PloS%20one&rft.au=Matsuda,%20Yoshitatsu&rft.date=2022-10-24&rft.volume=17&rft.issue=10&rft.spage=e0276680&rft.epage=e0276680&rft.pages=e0276680-e0276680&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276680&rft_dat=%3Cgale_plos_%3EA723878556%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c614t-36e6ce83c4d077b20940a6618d57a1e15537a7978cf8d6fc1ef324ae295f0d413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728052916&rft_id=info:pmid/36279275&rft_galeid=A723878556&rfr_iscdi=true |