Loading…
BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data
In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which ref...
Saved in:
Published in: | PloS one 2022-10, Vol.17 (10), p.e0276664-e0276664 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453 |
---|---|
cites | cdi_FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453 |
container_end_page | e0276664 |
container_issue | 10 |
container_start_page | e0276664 |
container_title | PloS one |
container_volume | 17 |
creator | Chen, Li-Pang |
description | In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which refers to BOOsting algorithm for Measurement Error in binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic regression and probit models with responses, predictors, or both contaminated with measurement error. The BOOME aims to address measurement error effects, and employ boosting procedure to make variable selection and estimation. |
doi_str_mv | 10.1371/journal.pone.0276664 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2729496864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724258901</galeid><doaj_id>oai_doaj_org_article_3bde1773ffc848cb884d01dbc56cf94c</doaj_id><sourcerecordid>A724258901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453</originalsourceid><addsrcrecordid>eNqNk12L1DAUhosouK7-A8GAIHrRMWnStPFCGJdVB1ZG_LoNaT7arJmmJq3s_ntTp8pW9kICTTnnyZuTNzlZ9hjBDcIVennpp9ALtxl8rzewqCil5E52ghguclpAfPfG__3sQYyXEJa4pvQkm97s9x_OX4Et-Hg9dr4Hg5DfRauB8QF0olfO9i042CidiNEaqxVQNmoRNUhZMLkxiM62Xa7sQffR-lQI0CH4kA8h1QNanT76agg6zlmgxCgeZveMcFE_WubT7Ovb8y9n7_OL_bvd2fYil5SyMce1KZsGMsQUNJgohmqMiEawQAQZXGNYMSalJoUhKYKlErSCJaxoVbCSlPg0e3LUHZyPfLEp8iKlCaM1JYnYHQnlxSUfgj2IcM29sPx3wIeWizBa6TTHjdKoqrAxsia1bOqaKIhUI0sqDSMyab1edpuag1ZS98kbtxJdZ3rb8db_5IyioiznYp4vAsH_mHQc-Wy8dk702k_HussCowom9Ok_6O2nW6hWpAPY3vi0r5xF-bYqSFHWDKJEbW6h0lD6YGW6Q2NTfLXgxWpBYkZ9NbZiipHvPn_6f3b_bc0-u8F2Wrixi95NY3o3cQ2SIyiDjzFo89dkBPncEn_c4HNL8KUl8C88z_4E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729496864</pqid></control><display><type>article</type><title>BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Chen, Li-Pang</creator><contributor>Moretti, Angelo</contributor><creatorcontrib>Chen, Li-Pang ; Moretti, Angelo</creatorcontrib><description>In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which refers to BOOsting algorithm for Measurement Error in binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic regression and probit models with responses, predictors, or both contaminated with measurement error. The BOOME aims to address measurement error effects, and employ boosting procedure to make variable selection and estimation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276664</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Bone marrow ; Computer and Information Sciences ; Data analysis ; Datasets ; Diagnosis ; Diagnostic errors ; Engineering and Technology ; Error analysis ; Error correction ; Feature selection ; Gene expression ; Generalized linear models ; Genetic aspects ; Health aspects ; Leukemia ; Medicine and Health Sciences ; Methods ; Microscopy ; Physical Sciences ; Prevention ; Regression analysis ; Regression models ; Research and Analysis Methods ; Risk factors</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0276664-e0276664</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Li-Pang Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Li-Pang Chen 2022 Li-Pang Chen</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453</citedby><cites>FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453</cites><orcidid>0000-0001-5440-5036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2729496864/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2729496864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><contributor>Moretti, Angelo</contributor><creatorcontrib>Chen, Li-Pang</creatorcontrib><title>BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data</title><title>PloS one</title><description>In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which refers to BOOsting algorithm for Measurement Error in binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic regression and probit models with responses, predictors, or both contaminated with measurement error. The BOOME aims to address measurement error effects, and employ boosting procedure to make variable selection and estimation.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Bone marrow</subject><subject>Computer and Information Sciences</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Diagnostic errors</subject><subject>Engineering and Technology</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Feature selection</subject><subject>Gene expression</subject><subject>Generalized linear models</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Leukemia</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Physical Sciences</subject><subject>Prevention</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhosouK7-A8GAIHrRMWnStPFCGJdVB1ZG_LoNaT7arJmmJq3s_ntTp8pW9kICTTnnyZuTNzlZ9hjBDcIVennpp9ALtxl8rzewqCil5E52ghguclpAfPfG__3sQYyXEJa4pvQkm97s9x_OX4Et-Hg9dr4Hg5DfRauB8QF0olfO9i042CidiNEaqxVQNmoRNUhZMLkxiM62Xa7sQffR-lQI0CH4kA8h1QNanT76agg6zlmgxCgeZveMcFE_WubT7Ovb8y9n7_OL_bvd2fYil5SyMce1KZsGMsQUNJgohmqMiEawQAQZXGNYMSalJoUhKYKlErSCJaxoVbCSlPg0e3LUHZyPfLEp8iKlCaM1JYnYHQnlxSUfgj2IcM29sPx3wIeWizBa6TTHjdKoqrAxsia1bOqaKIhUI0sqDSMyab1edpuag1ZS98kbtxJdZ3rb8db_5IyioiznYp4vAsH_mHQc-Wy8dk702k_HussCowom9Ok_6O2nW6hWpAPY3vi0r5xF-bYqSFHWDKJEbW6h0lD6YGW6Q2NTfLXgxWpBYkZ9NbZiipHvPn_6f3b_bc0-u8F2Wrixi95NY3o3cQ2SIyiDjzFo89dkBPncEn_c4HNL8KUl8C88z_4E</recordid><startdate>20221027</startdate><enddate>20221027</enddate><creator>Chen, Li-Pang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5440-5036</orcidid></search><sort><creationdate>20221027</creationdate><title>BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data</title><author>Chen, Li-Pang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Bone marrow</topic><topic>Computer and Information Sciences</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Diagnostic errors</topic><topic>Engineering and Technology</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Feature selection</topic><topic>Gene expression</topic><topic>Generalized linear models</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Leukemia</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Physical Sciences</topic><topic>Prevention</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li-Pang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li-Pang</au><au>Moretti, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data</atitle><jtitle>PloS one</jtitle><date>2022-10-27</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0276664</spage><epage>e0276664</epage><pages>e0276664-e0276664</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which refers to BOOsting algorithm for Measurement Error in binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic regression and probit models with responses, predictors, or both contaminated with measurement error. The BOOME aims to address measurement error effects, and employ boosting procedure to make variable selection and estimation.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0276664</doi><tpages>e0276664</tpages><orcidid>https://orcid.org/0000-0001-5440-5036</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-10, Vol.17 (10), p.e0276664-e0276664 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2729496864 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | Algorithms Biology and Life Sciences Bone marrow Computer and Information Sciences Data analysis Datasets Diagnosis Diagnostic errors Engineering and Technology Error analysis Error correction Feature selection Gene expression Generalized linear models Genetic aspects Health aspects Leukemia Medicine and Health Sciences Methods Microscopy Physical Sciences Prevention Regression analysis Regression models Research and Analysis Methods Risk factors |
title | BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BOOME:%20A%20Python%20package%20for%20handling%20misclassified%20disease%20and%20ultrahigh-dimensional%20error-prone%20gene%20expression%20data&rft.jtitle=PloS%20one&rft.au=Chen,%20Li-Pang&rft.date=2022-10-27&rft.volume=17&rft.issue=10&rft.spage=e0276664&rft.epage=e0276664&rft.pages=e0276664-e0276664&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276664&rft_dat=%3Cgale_plos_%3EA724258901%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2729496864&rft_id=info:pmid/&rft_galeid=A724258901&rfr_iscdi=true |