Loading…

BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data

In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which ref...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-10, Vol.17 (10), p.e0276664-e0276664
Main Author: Chen, Li-Pang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453
cites cdi_FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453
container_end_page e0276664
container_issue 10
container_start_page e0276664
container_title PloS one
container_volume 17
creator Chen, Li-Pang
description In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which refers to BOOsting algorithm for Measurement Error in binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic regression and probit models with responses, predictors, or both contaminated with measurement error. The BOOME aims to address measurement error effects, and employ boosting procedure to make variable selection and estimation.
doi_str_mv 10.1371/journal.pone.0276664
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2729496864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724258901</galeid><doaj_id>oai_doaj_org_article_3bde1773ffc848cb884d01dbc56cf94c</doaj_id><sourcerecordid>A724258901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453</originalsourceid><addsrcrecordid>eNqNk12L1DAUhosouK7-A8GAIHrRMWnStPFCGJdVB1ZG_LoNaT7arJmmJq3s_ntTp8pW9kICTTnnyZuTNzlZ9hjBDcIVennpp9ALtxl8rzewqCil5E52ghguclpAfPfG__3sQYyXEJa4pvQkm97s9x_OX4Et-Hg9dr4Hg5DfRauB8QF0olfO9i042CidiNEaqxVQNmoRNUhZMLkxiM62Xa7sQffR-lQI0CH4kA8h1QNanT76agg6zlmgxCgeZveMcFE_WubT7Ovb8y9n7_OL_bvd2fYil5SyMce1KZsGMsQUNJgohmqMiEawQAQZXGNYMSalJoUhKYKlErSCJaxoVbCSlPg0e3LUHZyPfLEp8iKlCaM1JYnYHQnlxSUfgj2IcM29sPx3wIeWizBa6TTHjdKoqrAxsia1bOqaKIhUI0sqDSMyab1edpuag1ZS98kbtxJdZ3rb8db_5IyioiznYp4vAsH_mHQc-Wy8dk702k_HussCowom9Ok_6O2nW6hWpAPY3vi0r5xF-bYqSFHWDKJEbW6h0lD6YGW6Q2NTfLXgxWpBYkZ9NbZiipHvPn_6f3b_bc0-u8F2Wrixi95NY3o3cQ2SIyiDjzFo89dkBPncEn_c4HNL8KUl8C88z_4E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729496864</pqid></control><display><type>article</type><title>BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Chen, Li-Pang</creator><contributor>Moretti, Angelo</contributor><creatorcontrib>Chen, Li-Pang ; Moretti, Angelo</creatorcontrib><description>In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which refers to BOOsting algorithm for Measurement Error in binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic regression and probit models with responses, predictors, or both contaminated with measurement error. The BOOME aims to address measurement error effects, and employ boosting procedure to make variable selection and estimation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276664</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Bone marrow ; Computer and Information Sciences ; Data analysis ; Datasets ; Diagnosis ; Diagnostic errors ; Engineering and Technology ; Error analysis ; Error correction ; Feature selection ; Gene expression ; Generalized linear models ; Genetic aspects ; Health aspects ; Leukemia ; Medicine and Health Sciences ; Methods ; Microscopy ; Physical Sciences ; Prevention ; Regression analysis ; Regression models ; Research and Analysis Methods ; Risk factors</subject><ispartof>PloS one, 2022-10, Vol.17 (10), p.e0276664-e0276664</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Li-Pang Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Li-Pang Chen 2022 Li-Pang Chen</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453</citedby><cites>FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453</cites><orcidid>0000-0001-5440-5036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2729496864/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2729496864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><contributor>Moretti, Angelo</contributor><creatorcontrib>Chen, Li-Pang</creatorcontrib><title>BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data</title><title>PloS one</title><description>In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which refers to BOOsting algorithm for Measurement Error in binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic regression and probit models with responses, predictors, or both contaminated with measurement error. The BOOME aims to address measurement error effects, and employ boosting procedure to make variable selection and estimation.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Bone marrow</subject><subject>Computer and Information Sciences</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Diagnosis</subject><subject>Diagnostic errors</subject><subject>Engineering and Technology</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Feature selection</subject><subject>Gene expression</subject><subject>Generalized linear models</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Leukemia</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Physical Sciences</subject><subject>Prevention</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhosouK7-A8GAIHrRMWnStPFCGJdVB1ZG_LoNaT7arJmmJq3s_ntTp8pW9kICTTnnyZuTNzlZ9hjBDcIVennpp9ALtxl8rzewqCil5E52ghguclpAfPfG__3sQYyXEJa4pvQkm97s9x_OX4Et-Hg9dr4Hg5DfRauB8QF0olfO9i042CidiNEaqxVQNmoRNUhZMLkxiM62Xa7sQffR-lQI0CH4kA8h1QNanT76agg6zlmgxCgeZveMcFE_WubT7Ovb8y9n7_OL_bvd2fYil5SyMce1KZsGMsQUNJgohmqMiEawQAQZXGNYMSalJoUhKYKlErSCJaxoVbCSlPg0e3LUHZyPfLEp8iKlCaM1JYnYHQnlxSUfgj2IcM29sPx3wIeWizBa6TTHjdKoqrAxsia1bOqaKIhUI0sqDSMyab1edpuag1ZS98kbtxJdZ3rb8db_5IyioiznYp4vAsH_mHQc-Wy8dk702k_HussCowom9Ok_6O2nW6hWpAPY3vi0r5xF-bYqSFHWDKJEbW6h0lD6YGW6Q2NTfLXgxWpBYkZ9NbZiipHvPn_6f3b_bc0-u8F2Wrixi95NY3o3cQ2SIyiDjzFo89dkBPncEn_c4HNL8KUl8C88z_4E</recordid><startdate>20221027</startdate><enddate>20221027</enddate><creator>Chen, Li-Pang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5440-5036</orcidid></search><sort><creationdate>20221027</creationdate><title>BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data</title><author>Chen, Li-Pang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Bone marrow</topic><topic>Computer and Information Sciences</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Diagnosis</topic><topic>Diagnostic errors</topic><topic>Engineering and Technology</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Feature selection</topic><topic>Gene expression</topic><topic>Generalized linear models</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Leukemia</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Physical Sciences</topic><topic>Prevention</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li-Pang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li-Pang</au><au>Moretti, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data</atitle><jtitle>PloS one</jtitle><date>2022-10-27</date><risdate>2022</risdate><volume>17</volume><issue>10</issue><spage>e0276664</spage><epage>e0276664</epage><pages>e0276664-e0276664</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In gene expression data analysis framework, ultrahigh dimensionality and measurement error are ubiquitous features. Therefore, it is crucial to correct measurement error effects and make variable selection when fitting a regression model. In this paper, we introduce a python package BOOME, which refers to BOOsting algorithm for Measurement Error in binary responses and ultrahigh-dimensional predictors. We primarily focus on logistic regression and probit models with responses, predictors, or both contaminated with measurement error. The BOOME aims to address measurement error effects, and employ boosting procedure to make variable selection and estimation.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0276664</doi><tpages>e0276664</tpages><orcidid>https://orcid.org/0000-0001-5440-5036</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-10, Vol.17 (10), p.e0276664-e0276664
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2729496864
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Algorithms
Biology and Life Sciences
Bone marrow
Computer and Information Sciences
Data analysis
Datasets
Diagnosis
Diagnostic errors
Engineering and Technology
Error analysis
Error correction
Feature selection
Gene expression
Generalized linear models
Genetic aspects
Health aspects
Leukemia
Medicine and Health Sciences
Methods
Microscopy
Physical Sciences
Prevention
Regression analysis
Regression models
Research and Analysis Methods
Risk factors
title BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BOOME:%20A%20Python%20package%20for%20handling%20misclassified%20disease%20and%20ultrahigh-dimensional%20error-prone%20gene%20expression%20data&rft.jtitle=PloS%20one&rft.au=Chen,%20Li-Pang&rft.date=2022-10-27&rft.volume=17&rft.issue=10&rft.spage=e0276664&rft.epage=e0276664&rft.pages=e0276664-e0276664&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276664&rft_dat=%3Cgale_plos_%3EA724258901%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c669t-38f5bb0919d0f34d918314e102141f3830799cce42f41413cda67050767295453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2729496864&rft_id=info:pmid/&rft_galeid=A724258901&rfr_iscdi=true