Loading…

Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses

In many practical situations, there is an interest in modeling bounded random variables in the interval (0, 1), such as rates, proportions, and indexes. It is important to provide new continuous models to deal with the uncertainty involved by variables of this type. This paper proposes a new quantil...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-11, Vol.17 (11), p.e0276695-e0276695
Main Authors: Ribeiro, Tatiane Fontana, Peña-Ramírez, Fernando A, Guerra, Renata Rojas, Cordeiro, Gauss M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c669t-4006354831c01d0eb1d738a87721dee72a5b7436abd4456bc3ff05f2f5b2e9da3
cites cdi_FETCH-LOGICAL-c669t-4006354831c01d0eb1d738a87721dee72a5b7436abd4456bc3ff05f2f5b2e9da3
container_end_page e0276695
container_issue 11
container_start_page e0276695
container_title PloS one
container_volume 17
creator Ribeiro, Tatiane Fontana
Peña-Ramírez, Fernando A
Guerra, Renata Rojas
Cordeiro, Gauss M
description In many practical situations, there is an interest in modeling bounded random variables in the interval (0, 1), such as rates, proportions, and indexes. It is important to provide new continuous models to deal with the uncertainty involved by variables of this type. This paper proposes a new quantile regression model based on an alternative parameterization of the unit Burr XII (UBXII) distribution. For the UBXII distribution and its associated regression, we obtain score functions and observed information matrices. We use the maximum likelihood method to estimate the parameters of the regression model, and conduct a Monte Carlo study to evaluate the performance of its estimates in samples of finite size. Furthermore, we present general diagnostic analysis and model selection techniques for the regression model. We empirically show its importance and flexibility through an application to an actual data set, in which the dropout proportion of Brazilian undergraduate animal sciences courses is analyzed. We use a statistical learning method for comparing the proposed model with the beta, Kumaraswamy, and unit-Weibull regressions. The results show that the UBXII regression provides the best fit and the most accurate predictions. Therefore, it is a valuable alternative and competitive to the well-known regressions for modeling double-bounded variables in the unit interval.
doi_str_mv 10.1371/journal.pone.0276695
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2731704801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724977656</galeid><doaj_id>oai_doaj_org_article_442cd5b686014f2f96275e087c56229f</doaj_id><sourcerecordid>A724977656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-4006354831c01d0eb1d738a87721dee72a5b7436abd4456bc3ff05f2f5b2e9da3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhosouK7-A8GAIOvFjPlok_ZGmF38GFhY8AvvwmlzOpMl03STVHT_hH_ZjFtlR_ZCepEmec775hzOKYqnjC6ZUOzVpZ_CAG45-gGXlCspm-peccQawReSU3H_1v_D4lGMl5RWopbyqPi5GnzaYiDTYBM5nUIgX9drcjXBkKxDEnATMEbrB7LzBh1pIaIheZujiLF9jwGHlLkRAuwwYbDXkPY8jKOzmU2emOBHPyViB3Ia4No6C0N2NBg2AcwECUmXc4gYHxcPenARn8zrcfH57ZtPZ-8X5xfv1mer80WXk0uLklIpqrIWrKPMUGyZUaKGWinODKLiULWqFBJaU5aVbDvR97TqeV-1HBsD4rh4dqM7Oh_1XMCouRJM0bKmLBPrG8J4uNRjsDsIP7QHq38f-LDREJLtHOqy5J2pWllLysps0kiuKqS16irJedNnrdez29Tu0HS5YgHcgejhzWC3euO_6UYKXjcqC5zMAsFfTRiT3tnYoXMwoJ_mdzMl-B59_g96d3YztYGcgB16n327vaheKV42SslKZmp5B5U_gzvb5W7rc48cBrw8CMhMwu9pA1OMev3xw_-zF18O2Re32C2CS9vo3bRvtHgIljdgF3yMAfu_RWZU74flTzX0flj0PCziFxdjCXM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731704801</pqid></control><display><type>article</type><title>Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Ribeiro, Tatiane Fontana ; Peña-Ramírez, Fernando A ; Guerra, Renata Rojas ; Cordeiro, Gauss M</creator><contributor>Amin, Muhammad</contributor><creatorcontrib>Ribeiro, Tatiane Fontana ; Peña-Ramírez, Fernando A ; Guerra, Renata Rojas ; Cordeiro, Gauss M ; Amin, Muhammad</creatorcontrib><description>In many practical situations, there is an interest in modeling bounded random variables in the interval (0, 1), such as rates, proportions, and indexes. It is important to provide new continuous models to deal with the uncertainty involved by variables of this type. This paper proposes a new quantile regression model based on an alternative parameterization of the unit Burr XII (UBXII) distribution. For the UBXII distribution and its associated regression, we obtain score functions and observed information matrices. We use the maximum likelihood method to estimate the parameters of the regression model, and conduct a Monte Carlo study to evaluate the performance of its estimates in samples of finite size. Furthermore, we present general diagnostic analysis and model selection techniques for the regression model. We empirically show its importance and flexibility through an application to an actual data set, in which the dropout proportion of Brazilian undergraduate animal sciences courses is analyzed. We use a statistical learning method for comparing the proposed model with the beta, Kumaraswamy, and unit-Weibull regressions. The results show that the UBXII regression provides the best fit and the most accurate predictions. Therefore, it is a valuable alternative and competitive to the well-known regressions for modeling double-bounded variables in the unit interval.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276695</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Animal sciences ; College dropouts ; Colleges &amp; universities ; Economic aspects ; Learning ; Maximum likelihood estimates ; Maximum likelihood method ; Methods ; Modelling ; Parameterization ; Performance evaluation ; Performance indices ; Random variables ; Regression analysis ; Regression models ; Skewness ; Social aspects ; Statistical analysis ; Statistical learning (Psychology) ; Statistical methods ; Statistics</subject><ispartof>PloS one, 2022-11, Vol.17 (11), p.e0276695-e0276695</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Ribeiro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Ribeiro et al 2022 Ribeiro et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-4006354831c01d0eb1d738a87721dee72a5b7436abd4456bc3ff05f2f5b2e9da3</citedby><cites>FETCH-LOGICAL-c669t-4006354831c01d0eb1d738a87721dee72a5b7436abd4456bc3ff05f2f5b2e9da3</cites><orcidid>0000-0002-8113-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2731704801/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2731704801?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,38495,43874,44569,53769,53771,74158,74872</link.rule.ids></links><search><contributor>Amin, Muhammad</contributor><creatorcontrib>Ribeiro, Tatiane Fontana</creatorcontrib><creatorcontrib>Peña-Ramírez, Fernando A</creatorcontrib><creatorcontrib>Guerra, Renata Rojas</creatorcontrib><creatorcontrib>Cordeiro, Gauss M</creatorcontrib><title>Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses</title><title>PloS one</title><description>In many practical situations, there is an interest in modeling bounded random variables in the interval (0, 1), such as rates, proportions, and indexes. It is important to provide new continuous models to deal with the uncertainty involved by variables of this type. This paper proposes a new quantile regression model based on an alternative parameterization of the unit Burr XII (UBXII) distribution. For the UBXII distribution and its associated regression, we obtain score functions and observed information matrices. We use the maximum likelihood method to estimate the parameters of the regression model, and conduct a Monte Carlo study to evaluate the performance of its estimates in samples of finite size. Furthermore, we present general diagnostic analysis and model selection techniques for the regression model. We empirically show its importance and flexibility through an application to an actual data set, in which the dropout proportion of Brazilian undergraduate animal sciences courses is analyzed. We use a statistical learning method for comparing the proposed model with the beta, Kumaraswamy, and unit-Weibull regressions. The results show that the UBXII regression provides the best fit and the most accurate predictions. Therefore, it is a valuable alternative and competitive to the well-known regressions for modeling double-bounded variables in the unit interval.</description><subject>Animal sciences</subject><subject>College dropouts</subject><subject>Colleges &amp; universities</subject><subject>Economic aspects</subject><subject>Learning</subject><subject>Maximum likelihood estimates</subject><subject>Maximum likelihood method</subject><subject>Methods</subject><subject>Modelling</subject><subject>Parameterization</subject><subject>Performance evaluation</subject><subject>Performance indices</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Skewness</subject><subject>Social aspects</subject><subject>Statistical analysis</subject><subject>Statistical learning (Psychology)</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhosouK7-A8GAIOvFjPlok_ZGmF38GFhY8AvvwmlzOpMl03STVHT_hH_ZjFtlR_ZCepEmec775hzOKYqnjC6ZUOzVpZ_CAG45-gGXlCspm-peccQawReSU3H_1v_D4lGMl5RWopbyqPi5GnzaYiDTYBM5nUIgX9drcjXBkKxDEnATMEbrB7LzBh1pIaIheZujiLF9jwGHlLkRAuwwYbDXkPY8jKOzmU2emOBHPyViB3Ia4No6C0N2NBg2AcwECUmXc4gYHxcPenARn8zrcfH57ZtPZ-8X5xfv1mer80WXk0uLklIpqrIWrKPMUGyZUaKGWinODKLiULWqFBJaU5aVbDvR97TqeV-1HBsD4rh4dqM7Oh_1XMCouRJM0bKmLBPrG8J4uNRjsDsIP7QHq38f-LDREJLtHOqy5J2pWllLysps0kiuKqS16irJedNnrdez29Tu0HS5YgHcgejhzWC3euO_6UYKXjcqC5zMAsFfTRiT3tnYoXMwoJ_mdzMl-B59_g96d3YztYGcgB16n327vaheKV42SslKZmp5B5U_gzvb5W7rc48cBrw8CMhMwu9pA1OMev3xw_-zF18O2Re32C2CS9vo3bRvtHgIljdgF3yMAfu_RWZU74flTzX0flj0PCziFxdjCXM</recordid><startdate>20221103</startdate><enddate>20221103</enddate><creator>Ribeiro, Tatiane Fontana</creator><creator>Peña-Ramírez, Fernando A</creator><creator>Guerra, Renata Rojas</creator><creator>Cordeiro, Gauss M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8113-710X</orcidid></search><sort><creationdate>20221103</creationdate><title>Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses</title><author>Ribeiro, Tatiane Fontana ; Peña-Ramírez, Fernando A ; Guerra, Renata Rojas ; Cordeiro, Gauss M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-4006354831c01d0eb1d738a87721dee72a5b7436abd4456bc3ff05f2f5b2e9da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal sciences</topic><topic>College dropouts</topic><topic>Colleges &amp; universities</topic><topic>Economic aspects</topic><topic>Learning</topic><topic>Maximum likelihood estimates</topic><topic>Maximum likelihood method</topic><topic>Methods</topic><topic>Modelling</topic><topic>Parameterization</topic><topic>Performance evaluation</topic><topic>Performance indices</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Skewness</topic><topic>Social aspects</topic><topic>Statistical analysis</topic><topic>Statistical learning (Psychology)</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, Tatiane Fontana</creatorcontrib><creatorcontrib>Peña-Ramírez, Fernando A</creatorcontrib><creatorcontrib>Guerra, Renata Rojas</creatorcontrib><creatorcontrib>Cordeiro, Gauss M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, Tatiane Fontana</au><au>Peña-Ramírez, Fernando A</au><au>Guerra, Renata Rojas</au><au>Cordeiro, Gauss M</au><au>Amin, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses</atitle><jtitle>PloS one</jtitle><date>2022-11-03</date><risdate>2022</risdate><volume>17</volume><issue>11</issue><spage>e0276695</spage><epage>e0276695</epage><pages>e0276695-e0276695</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In many practical situations, there is an interest in modeling bounded random variables in the interval (0, 1), such as rates, proportions, and indexes. It is important to provide new continuous models to deal with the uncertainty involved by variables of this type. This paper proposes a new quantile regression model based on an alternative parameterization of the unit Burr XII (UBXII) distribution. For the UBXII distribution and its associated regression, we obtain score functions and observed information matrices. We use the maximum likelihood method to estimate the parameters of the regression model, and conduct a Monte Carlo study to evaluate the performance of its estimates in samples of finite size. Furthermore, we present general diagnostic analysis and model selection techniques for the regression model. We empirically show its importance and flexibility through an application to an actual data set, in which the dropout proportion of Brazilian undergraduate animal sciences courses is analyzed. We use a statistical learning method for comparing the proposed model with the beta, Kumaraswamy, and unit-Weibull regressions. The results show that the UBXII regression provides the best fit and the most accurate predictions. Therefore, it is a valuable alternative and competitive to the well-known regressions for modeling double-bounded variables in the unit interval.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0276695</doi><tpages>e0276695</tpages><orcidid>https://orcid.org/0000-0002-8113-710X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-11, Vol.17 (11), p.e0276695-e0276695
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2731704801
source Open Access: PubMed Central; Publicly Available Content Database; Coronavirus Research Database
subjects Animal sciences
College dropouts
Colleges & universities
Economic aspects
Learning
Maximum likelihood estimates
Maximum likelihood method
Methods
Modelling
Parameterization
Performance evaluation
Performance indices
Random variables
Regression analysis
Regression models
Skewness
Social aspects
Statistical analysis
Statistical learning (Psychology)
Statistical methods
Statistics
title Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Another%20unit%20Burr%20XII%20quantile%20regression%20model%20based%20on%20the%20different%20reparameterization%20applied%20to%20dropout%20in%20Brazilian%20undergraduate%20courses&rft.jtitle=PloS%20one&rft.au=Ribeiro,%20Tatiane%20Fontana&rft.date=2022-11-03&rft.volume=17&rft.issue=11&rft.spage=e0276695&rft.epage=e0276695&rft.pages=e0276695-e0276695&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276695&rft_dat=%3Cgale_plos_%3EA724977656%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c669t-4006354831c01d0eb1d738a87721dee72a5b7436abd4456bc3ff05f2f5b2e9da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731704801&rft_id=info:pmid/&rft_galeid=A724977656&rfr_iscdi=true