Loading…

Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching

Fluorescence recovery after photobleaching (FRAP) is a versatile technique to evaluate the intracellular molecular exchange called turnover. Mechanochemical models of FRAP typically consider the molecular diffusion and chemical reaction that simultaneously occur on a time scale of seconds to minutes...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-11, Vol.17 (11), p.e0276909-e0276909
Main Authors: Saito, Takumi, Matsunaga, Daiki, Deguchi, Shinji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c665t-35c87c24ce31741a95cddfeb2c324c4d067f3c9d99568edea0d6b85b18b68d043
cites cdi_FETCH-LOGICAL-c665t-35c87c24ce31741a95cddfeb2c324c4d067f3c9d99568edea0d6b85b18b68d043
container_end_page e0276909
container_issue 11
container_start_page e0276909
container_title PloS one
container_volume 17
creator Saito, Takumi
Matsunaga, Daiki
Deguchi, Shinji
description Fluorescence recovery after photobleaching (FRAP) is a versatile technique to evaluate the intracellular molecular exchange called turnover. Mechanochemical models of FRAP typically consider the molecular diffusion and chemical reaction that simultaneously occur on a time scale of seconds to minutes. Particularly for long-term measurements, however, a mechanical advection effect can no longer be ignored, which transports the proteins in specific directions within the cells and accordingly shifts the spatial distribution of the local chemical equilibrium. Nevertheless, existing FRAP models have not considered the spatial shift, and as such, the turnover rate is often analyzed without considering the spatiotemporally updated chemical equilibrium. Here we develop a new FRAP model aimed at long-term measurements to quantitatively determine the two distinct effects of the advection and chemical reaction, i.e., the different major sources of the change in fluorescence intensity. To validate this approach, we carried out FRAP experiments on actin in stress fibers over a time period of more than 900 s, and the advection rate was shown to be comparable in magnitude to the chemical dissociation rate. We further found that the actin–myosin interaction and actin polymerization differently affect the advection and chemical dissociation. Our results suggest that the distinction between the two effects is indispensable to extract the intrinsic chemical properties of the actin cytoskeleton from the observations of complicated turnover in cells.
doi_str_mv 10.1371/journal.pone.0276909
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2733119520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725493525</galeid><doaj_id>oai_doaj_org_article_0d26823b33374e2e84dcd9659ae1c012</doaj_id><sourcerecordid>A725493525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c665t-35c87c24ce31741a95cddfeb2c324c4d067f3c9d99568edea0d6b85b18b68d043</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6DwQLguhFx3w0aXMjLIsfAwMLft2GNDntdEmbMWkH5yf4r01nqmxlL6QXDafP-56T03OS5DlGa0wL_PbWjb5Xdr13PawRKbhA4kFyiQUlGSeIPrxzvkiehHCLEKMl54-TC8ppTgRml8mvreubbADfpZ2zoEerfDpEZ3cAn7o6VXpo-zQMHkJI67YCH1IPB1AWTFodU2UOEBHXZx7U6ZCqWNYxtCGNwtqOLko19BqiTk-2UVTHjOl-5wZX2SjbtX3zNHlUKxvg2fxeJd8-vP96_Snb3nzcXF9tM805GzLKdFlokmuguMixEkwbU0NFNI3B3CBe1FQLIwTjJRhQyPCqZBUuK14alNNV8uLsu7cuyLmLQZKCUowFi91aJZszYZy6lXvfdsofpVOtPAWcb6TyQ6stSGQILwmtKKVFDgTK3GgjOBMKsEaYRK93c7ax6sDEPgxe2YXp8kvf7mTjDlJwKkoylft6NvDuxwhhkF0b22mt6sGN57oJYuiEvvwHvf92M9XEXyjbvnYxr55M5VVBWC4oIyxS63uo-BjoWh1Hrm5jfCF4sxBEZoCfQ6PGEOTmy-f_Z2--L9lXd9hdnLthF5wdp0kLSzA_g9q7EDzUf5uMkZw25k835LQxct4Y-hvbfAn3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733119520</pqid></control><display><type>article</type><title>Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Saito, Takumi ; Matsunaga, Daiki ; Deguchi, Shinji</creator><contributor>Chen, Kun</contributor><creatorcontrib>Saito, Takumi ; Matsunaga, Daiki ; Deguchi, Shinji ; Chen, Kun</creatorcontrib><description>Fluorescence recovery after photobleaching (FRAP) is a versatile technique to evaluate the intracellular molecular exchange called turnover. Mechanochemical models of FRAP typically consider the molecular diffusion and chemical reaction that simultaneously occur on a time scale of seconds to minutes. Particularly for long-term measurements, however, a mechanical advection effect can no longer be ignored, which transports the proteins in specific directions within the cells and accordingly shifts the spatial distribution of the local chemical equilibrium. Nevertheless, existing FRAP models have not considered the spatial shift, and as such, the turnover rate is often analyzed without considering the spatiotemporally updated chemical equilibrium. Here we develop a new FRAP model aimed at long-term measurements to quantitatively determine the two distinct effects of the advection and chemical reaction, i.e., the different major sources of the change in fluorescence intensity. To validate this approach, we carried out FRAP experiments on actin in stress fibers over a time period of more than 900 s, and the advection rate was shown to be comparable in magnitude to the chemical dissociation rate. We further found that the actin–myosin interaction and actin polymerization differently affect the advection and chemical dissociation. Our results suggest that the distinction between the two effects is indispensable to extract the intrinsic chemical properties of the actin cytoskeleton from the observations of complicated turnover in cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0276909</identifier><identifier>PMID: 36342915</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Actin ; Advection ; Analysis ; Biology and Life Sciences ; Chemical properties ; Chemical reactions ; Cytoskeleton ; Dissociation ; Equilibrium ; Experiments ; Fibers ; Fluorescence ; Fluorescence microscopy ; Fluorescence recovery after photobleaching ; Methods ; Molecular diffusion ; Myosin ; Photobleaching ; Photochemical reactions ; Physical Sciences ; Physiological aspects ; Polymerization ; Protein transport ; Proteins ; Recovery ; Research and Analysis Methods ; Spatial distribution ; Turnover rate</subject><ispartof>PloS one, 2022-11, Vol.17 (11), p.e0276909-e0276909</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Saito et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Saito et al 2022 Saito et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c665t-35c87c24ce31741a95cddfeb2c324c4d067f3c9d99568edea0d6b85b18b68d043</citedby><cites>FETCH-LOGICAL-c665t-35c87c24ce31741a95cddfeb2c324c4d067f3c9d99568edea0d6b85b18b68d043</cites><orcidid>0000-0002-0556-4599 ; 0000-0001-6433-6302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2733119520/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2733119520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><contributor>Chen, Kun</contributor><creatorcontrib>Saito, Takumi</creatorcontrib><creatorcontrib>Matsunaga, Daiki</creatorcontrib><creatorcontrib>Deguchi, Shinji</creatorcontrib><title>Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching</title><title>PloS one</title><description>Fluorescence recovery after photobleaching (FRAP) is a versatile technique to evaluate the intracellular molecular exchange called turnover. Mechanochemical models of FRAP typically consider the molecular diffusion and chemical reaction that simultaneously occur on a time scale of seconds to minutes. Particularly for long-term measurements, however, a mechanical advection effect can no longer be ignored, which transports the proteins in specific directions within the cells and accordingly shifts the spatial distribution of the local chemical equilibrium. Nevertheless, existing FRAP models have not considered the spatial shift, and as such, the turnover rate is often analyzed without considering the spatiotemporally updated chemical equilibrium. Here we develop a new FRAP model aimed at long-term measurements to quantitatively determine the two distinct effects of the advection and chemical reaction, i.e., the different major sources of the change in fluorescence intensity. To validate this approach, we carried out FRAP experiments on actin in stress fibers over a time period of more than 900 s, and the advection rate was shown to be comparable in magnitude to the chemical dissociation rate. We further found that the actin–myosin interaction and actin polymerization differently affect the advection and chemical dissociation. Our results suggest that the distinction between the two effects is indispensable to extract the intrinsic chemical properties of the actin cytoskeleton from the observations of complicated turnover in cells.</description><subject>Actin</subject><subject>Advection</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Chemical properties</subject><subject>Chemical reactions</subject><subject>Cytoskeleton</subject><subject>Dissociation</subject><subject>Equilibrium</subject><subject>Experiments</subject><subject>Fibers</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Fluorescence recovery after photobleaching</subject><subject>Methods</subject><subject>Molecular diffusion</subject><subject>Myosin</subject><subject>Photobleaching</subject><subject>Photochemical reactions</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Polymerization</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Recovery</subject><subject>Research and Analysis Methods</subject><subject>Spatial distribution</subject><subject>Turnover rate</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6DwQLguhFx3w0aXMjLIsfAwMLft2GNDntdEmbMWkH5yf4r01nqmxlL6QXDafP-56T03OS5DlGa0wL_PbWjb5Xdr13PawRKbhA4kFyiQUlGSeIPrxzvkiehHCLEKMl54-TC8ppTgRml8mvreubbADfpZ2zoEerfDpEZ3cAn7o6VXpo-zQMHkJI67YCH1IPB1AWTFodU2UOEBHXZx7U6ZCqWNYxtCGNwtqOLko19BqiTk-2UVTHjOl-5wZX2SjbtX3zNHlUKxvg2fxeJd8-vP96_Snb3nzcXF9tM805GzLKdFlokmuguMixEkwbU0NFNI3B3CBe1FQLIwTjJRhQyPCqZBUuK14alNNV8uLsu7cuyLmLQZKCUowFi91aJZszYZy6lXvfdsofpVOtPAWcb6TyQ6stSGQILwmtKKVFDgTK3GgjOBMKsEaYRK93c7ax6sDEPgxe2YXp8kvf7mTjDlJwKkoylft6NvDuxwhhkF0b22mt6sGN57oJYuiEvvwHvf92M9XEXyjbvnYxr55M5VVBWC4oIyxS63uo-BjoWh1Hrm5jfCF4sxBEZoCfQ6PGEOTmy-f_Z2--L9lXd9hdnLthF5wdp0kLSzA_g9q7EDzUf5uMkZw25k835LQxct4Y-hvbfAn3</recordid><startdate>20221107</startdate><enddate>20221107</enddate><creator>Saito, Takumi</creator><creator>Matsunaga, Daiki</creator><creator>Deguchi, Shinji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0556-4599</orcidid><orcidid>https://orcid.org/0000-0001-6433-6302</orcidid></search><sort><creationdate>20221107</creationdate><title>Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching</title><author>Saito, Takumi ; Matsunaga, Daiki ; Deguchi, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c665t-35c87c24ce31741a95cddfeb2c324c4d067f3c9d99568edea0d6b85b18b68d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actin</topic><topic>Advection</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Chemical properties</topic><topic>Chemical reactions</topic><topic>Cytoskeleton</topic><topic>Dissociation</topic><topic>Equilibrium</topic><topic>Experiments</topic><topic>Fibers</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Fluorescence recovery after photobleaching</topic><topic>Methods</topic><topic>Molecular diffusion</topic><topic>Myosin</topic><topic>Photobleaching</topic><topic>Photochemical reactions</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Polymerization</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Recovery</topic><topic>Research and Analysis Methods</topic><topic>Spatial distribution</topic><topic>Turnover rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Takumi</creatorcontrib><creatorcontrib>Matsunaga, Daiki</creatorcontrib><creatorcontrib>Deguchi, Shinji</creatorcontrib><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Takumi</au><au>Matsunaga, Daiki</au><au>Deguchi, Shinji</au><au>Chen, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching</atitle><jtitle>PloS one</jtitle><date>2022-11-07</date><risdate>2022</risdate><volume>17</volume><issue>11</issue><spage>e0276909</spage><epage>e0276909</epage><pages>e0276909-e0276909</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Fluorescence recovery after photobleaching (FRAP) is a versatile technique to evaluate the intracellular molecular exchange called turnover. Mechanochemical models of FRAP typically consider the molecular diffusion and chemical reaction that simultaneously occur on a time scale of seconds to minutes. Particularly for long-term measurements, however, a mechanical advection effect can no longer be ignored, which transports the proteins in specific directions within the cells and accordingly shifts the spatial distribution of the local chemical equilibrium. Nevertheless, existing FRAP models have not considered the spatial shift, and as such, the turnover rate is often analyzed without considering the spatiotemporally updated chemical equilibrium. Here we develop a new FRAP model aimed at long-term measurements to quantitatively determine the two distinct effects of the advection and chemical reaction, i.e., the different major sources of the change in fluorescence intensity. To validate this approach, we carried out FRAP experiments on actin in stress fibers over a time period of more than 900 s, and the advection rate was shown to be comparable in magnitude to the chemical dissociation rate. We further found that the actin–myosin interaction and actin polymerization differently affect the advection and chemical dissociation. Our results suggest that the distinction between the two effects is indispensable to extract the intrinsic chemical properties of the actin cytoskeleton from the observations of complicated turnover in cells.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36342915</pmid><doi>10.1371/journal.pone.0276909</doi><tpages>e0276909</tpages><orcidid>https://orcid.org/0000-0002-0556-4599</orcidid><orcidid>https://orcid.org/0000-0001-6433-6302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-11, Vol.17 (11), p.e0276909-e0276909
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2733119520
source PubMed Central (Open Access); Publicly Available Content Database
subjects Actin
Advection
Analysis
Biology and Life Sciences
Chemical properties
Chemical reactions
Cytoskeleton
Dissociation
Equilibrium
Experiments
Fibers
Fluorescence
Fluorescence microscopy
Fluorescence recovery after photobleaching
Methods
Molecular diffusion
Myosin
Photobleaching
Photochemical reactions
Physical Sciences
Physiological aspects
Polymerization
Protein transport
Proteins
Recovery
Research and Analysis Methods
Spatial distribution
Turnover rate
title Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20molecular%20turnover%20of%20actin%20stress%20fibers%20revealed%20by%20advection-reaction%20analysis%20in%20fluorescence%20recovery%20after%20photobleaching&rft.jtitle=PloS%20one&rft.au=Saito,%20Takumi&rft.date=2022-11-07&rft.volume=17&rft.issue=11&rft.spage=e0276909&rft.epage=e0276909&rft.pages=e0276909-e0276909&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0276909&rft_dat=%3Cgale_plos_%3EA725493525%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c665t-35c87c24ce31741a95cddfeb2c324c4d067f3c9d99568edea0d6b85b18b68d043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733119520&rft_id=info:pmid/36342915&rft_galeid=A725493525&rfr_iscdi=true