Loading…

Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion

Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordin...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2022-10, Vol.18 (10), p.e1010555-e1010555
Main Authors: Gelbach, Patrick E., Zheng, Dongqing, Fraser, Scott E., White, Kate L., Graham, Nicholas A., Finley, Stacey D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3
cites cdi_FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3
container_end_page e1010555
container_issue 10
container_start_page e1010555
container_title PLoS computational biology
container_volume 18
creator Gelbach, Patrick E.
Zheng, Dongqing
Fraser, Scott E.
White, Kate L.
Graham, Nicholas A.
Finley, Stacey D.
description Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell’s fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure in vitro . In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.
doi_str_mv 10.1371/journal.pcbi.1010555
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2737143027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fe77bacb0dce4ad5b98c883832f02538</doaj_id><sourcerecordid>2737143027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3</originalsourceid><addsrcrecordid>eNptUtuK1TAUDaI4Y_UPBAu--NJjLk3TvggyOOPggC_6HHZuxxza5Ji0A_NbfojfZDqniiNCYG2StVf2XiyEXhK8I0yQt4e4pADj7qiV3xFMMOf8ETonnLNGMN4__qs-Q89yPmBcyqF7is5YRzkRhJwj98kHO3tdQzC1gRkak_ytDfUUjR192NfR1UcIOllYaT9_NNqOY61tmBMUhKRiYdsZVBx9nu6FfMhLaa6zLX2zj-E5euJgzPbFhhX6evnhy8XH5ubz1fXF-5tGc8zmhg6A277DetAUaM86LYzrHHe2H0ARR4wYtGGtcNRpjSk1gLnQ5RjTtVSxCr066R7HmOVmUZZUFMdahgtW6PrEMBEO8pj8BOlORvDy_iKmvYRUNh2tdFYIBVpho20Lhquh133PekYdprxghd5tvy1qsmbz5IHow5fgv8l9vJVDR2hfJCr0ZhNI8fti8ywnn1d_Idi4rHNT3rYt5bRQX_9D_f927YmlU8w5WfdnGILlGpvfXXKNjdxiw34BLie5Uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737143027</pqid></control><display><type>article</type><title>Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion</title><source>Open Access: PubMed Central</source><source>ProQuest Publicly Available Content database</source><creator>Gelbach, Patrick E. ; Zheng, Dongqing ; Fraser, Scott E. ; White, Kate L. ; Graham, Nicholas A. ; Finley, Stacey D.</creator><contributor>Hatzimanikatis, Vassily</contributor><creatorcontrib>Gelbach, Patrick E. ; Zheng, Dongqing ; Fraser, Scott E. ; White, Kate L. ; Graham, Nicholas A. ; Finley, Stacey D. ; Hatzimanikatis, Vassily</creatorcontrib><description>Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell’s fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure in vitro . In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010555</identifier><identifier>PMID: 36251711</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Beta cells ; Biology and Life Sciences ; Carbon ; Computer and Information Sciences ; Diabetes ; Diabetes mellitus ; Enzymes ; Glucose ; Glucose metabolism ; Insulin ; Insulin secretion ; Least squares method ; Medicine and Health Sciences ; Metabolic flux ; Metabolic networks ; Metabolic pathways ; Metabolism ; Metabolites ; Metabolomics ; Mitochondria ; Modelling ; Pancreas ; Pathways ; Physical Sciences ; Regression models ; Secretion</subject><ispartof>PLoS computational biology, 2022-10, Vol.18 (10), p.e1010555-e1010555</ispartof><rights>2022 Gelbach et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Gelbach et al 2022 Gelbach et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3</citedby><cites>FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3</cites><orcidid>0000-0002-6811-1941 ; 0000-0001-9721-5224 ; 0000-0001-6901-3692 ; 0000-0001-8894-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2737143027/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2737143027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>Hatzimanikatis, Vassily</contributor><creatorcontrib>Gelbach, Patrick E.</creatorcontrib><creatorcontrib>Zheng, Dongqing</creatorcontrib><creatorcontrib>Fraser, Scott E.</creatorcontrib><creatorcontrib>White, Kate L.</creatorcontrib><creatorcontrib>Graham, Nicholas A.</creatorcontrib><creatorcontrib>Finley, Stacey D.</creatorcontrib><title>Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion</title><title>PLoS computational biology</title><description>Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell’s fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure in vitro . In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.</description><subject>Beta cells</subject><subject>Biology and Life Sciences</subject><subject>Carbon</subject><subject>Computer and Information Sciences</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Enzymes</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Insulin</subject><subject>Insulin secretion</subject><subject>Least squares method</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic flux</subject><subject>Metabolic networks</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mitochondria</subject><subject>Modelling</subject><subject>Pancreas</subject><subject>Pathways</subject><subject>Physical Sciences</subject><subject>Regression models</subject><subject>Secretion</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUtuK1TAUDaI4Y_UPBAu--NJjLk3TvggyOOPggC_6HHZuxxza5Ji0A_NbfojfZDqniiNCYG2StVf2XiyEXhK8I0yQt4e4pADj7qiV3xFMMOf8ETonnLNGMN4__qs-Q89yPmBcyqF7is5YRzkRhJwj98kHO3tdQzC1gRkak_ytDfUUjR192NfR1UcIOllYaT9_NNqOY61tmBMUhKRiYdsZVBx9nu6FfMhLaa6zLX2zj-E5euJgzPbFhhX6evnhy8XH5ubz1fXF-5tGc8zmhg6A277DetAUaM86LYzrHHe2H0ARR4wYtGGtcNRpjSk1gLnQ5RjTtVSxCr066R7HmOVmUZZUFMdahgtW6PrEMBEO8pj8BOlORvDy_iKmvYRUNh2tdFYIBVpho20Lhquh133PekYdprxghd5tvy1qsmbz5IHow5fgv8l9vJVDR2hfJCr0ZhNI8fti8ywnn1d_Idi4rHNT3rYt5bRQX_9D_f927YmlU8w5WfdnGILlGpvfXXKNjdxiw34BLie5Uw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Gelbach, Patrick E.</creator><creator>Zheng, Dongqing</creator><creator>Fraser, Scott E.</creator><creator>White, Kate L.</creator><creator>Graham, Nicholas A.</creator><creator>Finley, Stacey D.</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6811-1941</orcidid><orcidid>https://orcid.org/0000-0001-9721-5224</orcidid><orcidid>https://orcid.org/0000-0001-6901-3692</orcidid><orcidid>https://orcid.org/0000-0001-8894-9621</orcidid></search><sort><creationdate>20221001</creationdate><title>Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion</title><author>Gelbach, Patrick E. ; Zheng, Dongqing ; Fraser, Scott E. ; White, Kate L. ; Graham, Nicholas A. ; Finley, Stacey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beta cells</topic><topic>Biology and Life Sciences</topic><topic>Carbon</topic><topic>Computer and Information Sciences</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Enzymes</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Insulin</topic><topic>Insulin secretion</topic><topic>Least squares method</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic flux</topic><topic>Metabolic networks</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mitochondria</topic><topic>Modelling</topic><topic>Pancreas</topic><topic>Pathways</topic><topic>Physical Sciences</topic><topic>Regression models</topic><topic>Secretion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelbach, Patrick E.</creatorcontrib><creatorcontrib>Zheng, Dongqing</creatorcontrib><creatorcontrib>Fraser, Scott E.</creatorcontrib><creatorcontrib>White, Kate L.</creatorcontrib><creatorcontrib>Graham, Nicholas A.</creatorcontrib><creatorcontrib>Finley, Stacey D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelbach, Patrick E.</au><au>Zheng, Dongqing</au><au>Fraser, Scott E.</au><au>White, Kate L.</au><au>Graham, Nicholas A.</au><au>Finley, Stacey D.</au><au>Hatzimanikatis, Vassily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion</atitle><jtitle>PLoS computational biology</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>e1010555</spage><epage>e1010555</epage><pages>e1010555-e1010555</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell’s fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure in vitro . In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36251711</pmid><doi>10.1371/journal.pcbi.1010555</doi><orcidid>https://orcid.org/0000-0002-6811-1941</orcidid><orcidid>https://orcid.org/0000-0001-9721-5224</orcidid><orcidid>https://orcid.org/0000-0001-6901-3692</orcidid><orcidid>https://orcid.org/0000-0001-8894-9621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2022-10, Vol.18 (10), p.e1010555-e1010555
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2737143027
source Open Access: PubMed Central; ProQuest Publicly Available Content database
subjects Beta cells
Biology and Life Sciences
Carbon
Computer and Information Sciences
Diabetes
Diabetes mellitus
Enzymes
Glucose
Glucose metabolism
Insulin
Insulin secretion
Least squares method
Medicine and Health Sciences
Metabolic flux
Metabolic networks
Metabolic pathways
Metabolism
Metabolites
Metabolomics
Mitochondria
Modelling
Pancreas
Pathways
Physical Sciences
Regression models
Secretion
title Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20and%20data-driven%20modeling%20of%20pancreatic%20%CE%B2-cell%20central%20carbon%20metabolism%20and%20insulin%20secretion&rft.jtitle=PLoS%20computational%20biology&rft.au=Gelbach,%20Patrick%20E.&rft.date=2022-10-01&rft.volume=18&rft.issue=10&rft.spage=e1010555&rft.epage=e1010555&rft.pages=e1010555-e1010555&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010555&rft_dat=%3Cproquest_plos_%3E2737143027%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737143027&rft_id=info:pmid/36251711&rfr_iscdi=true