Loading…
Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion
Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordin...
Saved in:
Published in: | PLoS computational biology 2022-10, Vol.18 (10), p.e1010555-e1010555 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3 |
container_end_page | e1010555 |
container_issue | 10 |
container_start_page | e1010555 |
container_title | PLoS computational biology |
container_volume | 18 |
creator | Gelbach, Patrick E. Zheng, Dongqing Fraser, Scott E. White, Kate L. Graham, Nicholas A. Finley, Stacey D. |
description | Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell’s fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure
in vitro
. In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment. |
doi_str_mv | 10.1371/journal.pcbi.1010555 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2737143027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fe77bacb0dce4ad5b98c883832f02538</doaj_id><sourcerecordid>2737143027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3</originalsourceid><addsrcrecordid>eNptUtuK1TAUDaI4Y_UPBAu--NJjLk3TvggyOOPggC_6HHZuxxza5Ji0A_NbfojfZDqniiNCYG2StVf2XiyEXhK8I0yQt4e4pADj7qiV3xFMMOf8ETonnLNGMN4__qs-Q89yPmBcyqF7is5YRzkRhJwj98kHO3tdQzC1gRkak_ytDfUUjR192NfR1UcIOllYaT9_NNqOY61tmBMUhKRiYdsZVBx9nu6FfMhLaa6zLX2zj-E5euJgzPbFhhX6evnhy8XH5ubz1fXF-5tGc8zmhg6A277DetAUaM86LYzrHHe2H0ARR4wYtGGtcNRpjSk1gLnQ5RjTtVSxCr066R7HmOVmUZZUFMdahgtW6PrEMBEO8pj8BOlORvDy_iKmvYRUNh2tdFYIBVpho20Lhquh133PekYdprxghd5tvy1qsmbz5IHow5fgv8l9vJVDR2hfJCr0ZhNI8fti8ywnn1d_Idi4rHNT3rYt5bRQX_9D_f927YmlU8w5WfdnGILlGpvfXXKNjdxiw34BLie5Uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737143027</pqid></control><display><type>article</type><title>Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion</title><source>Open Access: PubMed Central</source><source>ProQuest Publicly Available Content database</source><creator>Gelbach, Patrick E. ; Zheng, Dongqing ; Fraser, Scott E. ; White, Kate L. ; Graham, Nicholas A. ; Finley, Stacey D.</creator><contributor>Hatzimanikatis, Vassily</contributor><creatorcontrib>Gelbach, Patrick E. ; Zheng, Dongqing ; Fraser, Scott E. ; White, Kate L. ; Graham, Nicholas A. ; Finley, Stacey D. ; Hatzimanikatis, Vassily</creatorcontrib><description>Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell’s fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure
in vitro
. In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1010555</identifier><identifier>PMID: 36251711</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Beta cells ; Biology and Life Sciences ; Carbon ; Computer and Information Sciences ; Diabetes ; Diabetes mellitus ; Enzymes ; Glucose ; Glucose metabolism ; Insulin ; Insulin secretion ; Least squares method ; Medicine and Health Sciences ; Metabolic flux ; Metabolic networks ; Metabolic pathways ; Metabolism ; Metabolites ; Metabolomics ; Mitochondria ; Modelling ; Pancreas ; Pathways ; Physical Sciences ; Regression models ; Secretion</subject><ispartof>PLoS computational biology, 2022-10, Vol.18 (10), p.e1010555-e1010555</ispartof><rights>2022 Gelbach et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Gelbach et al 2022 Gelbach et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3</citedby><cites>FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3</cites><orcidid>0000-0002-6811-1941 ; 0000-0001-9721-5224 ; 0000-0001-6901-3692 ; 0000-0001-8894-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2737143027/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2737143027?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>Hatzimanikatis, Vassily</contributor><creatorcontrib>Gelbach, Patrick E.</creatorcontrib><creatorcontrib>Zheng, Dongqing</creatorcontrib><creatorcontrib>Fraser, Scott E.</creatorcontrib><creatorcontrib>White, Kate L.</creatorcontrib><creatorcontrib>Graham, Nicholas A.</creatorcontrib><creatorcontrib>Finley, Stacey D.</creatorcontrib><title>Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion</title><title>PLoS computational biology</title><description>Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell’s fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure
in vitro
. In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.</description><subject>Beta cells</subject><subject>Biology and Life Sciences</subject><subject>Carbon</subject><subject>Computer and Information Sciences</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Enzymes</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Insulin</subject><subject>Insulin secretion</subject><subject>Least squares method</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic flux</subject><subject>Metabolic networks</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mitochondria</subject><subject>Modelling</subject><subject>Pancreas</subject><subject>Pathways</subject><subject>Physical Sciences</subject><subject>Regression models</subject><subject>Secretion</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUtuK1TAUDaI4Y_UPBAu--NJjLk3TvggyOOPggC_6HHZuxxza5Ji0A_NbfojfZDqniiNCYG2StVf2XiyEXhK8I0yQt4e4pADj7qiV3xFMMOf8ETonnLNGMN4__qs-Q89yPmBcyqF7is5YRzkRhJwj98kHO3tdQzC1gRkak_ytDfUUjR192NfR1UcIOllYaT9_NNqOY61tmBMUhKRiYdsZVBx9nu6FfMhLaa6zLX2zj-E5euJgzPbFhhX6evnhy8XH5ubz1fXF-5tGc8zmhg6A277DetAUaM86LYzrHHe2H0ARR4wYtGGtcNRpjSk1gLnQ5RjTtVSxCr066R7HmOVmUZZUFMdahgtW6PrEMBEO8pj8BOlORvDy_iKmvYRUNh2tdFYIBVpho20Lhquh133PekYdprxghd5tvy1qsmbz5IHow5fgv8l9vJVDR2hfJCr0ZhNI8fti8ywnn1d_Idi4rHNT3rYt5bRQX_9D_f927YmlU8w5WfdnGILlGpvfXXKNjdxiw34BLie5Uw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Gelbach, Patrick E.</creator><creator>Zheng, Dongqing</creator><creator>Fraser, Scott E.</creator><creator>White, Kate L.</creator><creator>Graham, Nicholas A.</creator><creator>Finley, Stacey D.</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6811-1941</orcidid><orcidid>https://orcid.org/0000-0001-9721-5224</orcidid><orcidid>https://orcid.org/0000-0001-6901-3692</orcidid><orcidid>https://orcid.org/0000-0001-8894-9621</orcidid></search><sort><creationdate>20221001</creationdate><title>Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion</title><author>Gelbach, Patrick E. ; Zheng, Dongqing ; Fraser, Scott E. ; White, Kate L. ; Graham, Nicholas A. ; Finley, Stacey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beta cells</topic><topic>Biology and Life Sciences</topic><topic>Carbon</topic><topic>Computer and Information Sciences</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Enzymes</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Insulin</topic><topic>Insulin secretion</topic><topic>Least squares method</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic flux</topic><topic>Metabolic networks</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mitochondria</topic><topic>Modelling</topic><topic>Pancreas</topic><topic>Pathways</topic><topic>Physical Sciences</topic><topic>Regression models</topic><topic>Secretion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelbach, Patrick E.</creatorcontrib><creatorcontrib>Zheng, Dongqing</creatorcontrib><creatorcontrib>Fraser, Scott E.</creatorcontrib><creatorcontrib>White, Kate L.</creatorcontrib><creatorcontrib>Graham, Nicholas A.</creatorcontrib><creatorcontrib>Finley, Stacey D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelbach, Patrick E.</au><au>Zheng, Dongqing</au><au>Fraser, Scott E.</au><au>White, Kate L.</au><au>Graham, Nicholas A.</au><au>Finley, Stacey D.</au><au>Hatzimanikatis, Vassily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion</atitle><jtitle>PLoS computational biology</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>e1010555</spage><epage>e1010555</epage><pages>e1010555-e1010555</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell’s fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure
in vitro
. In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>36251711</pmid><doi>10.1371/journal.pcbi.1010555</doi><orcidid>https://orcid.org/0000-0002-6811-1941</orcidid><orcidid>https://orcid.org/0000-0001-9721-5224</orcidid><orcidid>https://orcid.org/0000-0001-6901-3692</orcidid><orcidid>https://orcid.org/0000-0001-8894-9621</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2022-10, Vol.18 (10), p.e1010555-e1010555 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2737143027 |
source | Open Access: PubMed Central; ProQuest Publicly Available Content database |
subjects | Beta cells Biology and Life Sciences Carbon Computer and Information Sciences Diabetes Diabetes mellitus Enzymes Glucose Glucose metabolism Insulin Insulin secretion Least squares method Medicine and Health Sciences Metabolic flux Metabolic networks Metabolic pathways Metabolism Metabolites Metabolomics Mitochondria Modelling Pancreas Pathways Physical Sciences Regression models Secretion |
title | Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20and%20data-driven%20modeling%20of%20pancreatic%20%CE%B2-cell%20central%20carbon%20metabolism%20and%20insulin%20secretion&rft.jtitle=PLoS%20computational%20biology&rft.au=Gelbach,%20Patrick%20E.&rft.date=2022-10-01&rft.volume=18&rft.issue=10&rft.spage=e1010555&rft.epage=e1010555&rft.pages=e1010555-e1010555&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1010555&rft_dat=%3Cproquest_plos_%3E2737143027%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-29a04860c9c2a2836c7df6f5fe89ab1f1d79cd347f2fcc022da057c57cdd642b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737143027&rft_id=info:pmid/36251711&rfr_iscdi=true |