Loading…

Quality control on digital cancer registration

Population-based cancer registration methods are subject to internationally-established rules. To ensure efficient and effective case recording, population-based cancer registries widely adopt digital processing (DP) methods. At the Veneto Tumor Registry (RTV), about 50% of all digitally-identified...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2022-12, Vol.17 (12), p.e0279415-e0279415
Main Authors: Guzzinati, Stefano, Battagello, Jessica, Bovo, Emanuela, Baracco, Maddalena, Baracco, Susanna, Carpin, Eva, Dal Cin, Antonella, Fiore, Anna Rita, Greco, Alessandra, Martin, Giancarla, Memo, Laura, Monetti, Daniele, Rizzato, Silvia, Stocco, Carmen, Zamberlan, Sara, Zorzi, Manuel, Rugge, Massimo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Population-based cancer registration methods are subject to internationally-established rules. To ensure efficient and effective case recording, population-based cancer registries widely adopt digital processing (DP) methods. At the Veneto Tumor Registry (RTV), about 50% of all digitally-identified (putative) cases of cancer are further profiled by means of registrars' assessments (RAs). Taking these RAs for reference, the present study examines how well the registry's DP performs. A series of 1,801 (putative) incident and prevalent cancers identified using DP methods were randomly assigned to two experienced registrars (blinded to the DP output), who independently re-assessed every case. This study focuses on the concordance between the DP output and the RAs as concerns cancer status (incident versus prevalent), topography, and morphology. The RAs confirmed the cancer status emerging from DP for 1,266/1,317 incident cancers (positive predictive value [PPV] = 96.1%) and 460/472 prevalent cancers (PPV = 97.5%). This level of concordance ranks as "optimal", with a Cohen's K value of 0.91. The overall prevalence of false-positive cancer cases identified by DP was 2.9%, and was affected by the number of digital variables available. DP and the RAs were consistent in identifying cancer topography in 88.7% of cases; differences concerned different sites within the same anatomo-functional district (according to the International Agency for Research on Cancer [IARC]) in 9.6% of cases. In short, using DP for cancer case registration suffers from only trivial inconsistencies. The efficiency and reliability of digital cancer registration is influenced by the availability of good-quality clinical information, and the regular interdisciplinary monitoring of a registry's DP performance.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0279415