Loading…

Identification of the potential active site of the septal peptidoglycan polymerase FtsW

SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their cru...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2022-01, Vol.18 (1), p.e1009993-e1009993
Main Authors: Li, Ying, Boes, Adrien, Cui, Yuanyuan, Zhao, Shan, Liao, Qingzhen, Gong, Han, Breukink, Eefjan, Lutkenhaus, Joe, Terrak, Mohammed, Du, Shishen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c770t-9a7d19b74433a45e44f2e589a6b1804a39279dabbf034d24446116e9112875243
cites cdi_FETCH-LOGICAL-c770t-9a7d19b74433a45e44f2e589a6b1804a39279dabbf034d24446116e9112875243
container_end_page e1009993
container_issue 1
container_start_page e1009993
container_title PLoS genetics
container_volume 18
creator Li, Ying
Boes, Adrien
Cui, Yuanyuan
Zhao, Shan
Liao, Qingzhen
Gong, Han
Breukink, Eefjan
Lutkenhaus, Joe
Terrak, Mohammed
Du, Shishen
description SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors.
doi_str_mv 10.1371/journal.pgen.1009993
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2762191922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691413790</galeid><doaj_id>oai_doaj_org_article_4def7196b5ab4ed98ec688fe060bb6bb</doaj_id><sourcerecordid>A691413790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c770t-9a7d19b74433a45e44f2e589a6b1804a39279dabbf034d24446116e9112875243</originalsourceid><addsrcrecordid>eNqVk1tv0zAUxyMEYmPwDRBEQkLw0OJb7PgFaZoYVJqYxG2Plp2cpJ7cuIudin573DadWrQHUB5snfP7n1t8suwlRlNMBf5w64e-0266bKGbYoSklPRRdoqLgk4EQ-zxwf0kexbCLUK0KKV4mp1QJkuOOT7NbmY1dNE2ttLR-i73TR7nkC993Ji1y3UV7QryYCPsnQGWMXmW6bC1b9260l1SuPUCeh0gv4zh5nn2pNEuwIvxPMt-Xn76cfFlcnX9eXZxfjWphEBxIrWosTSCMUo1K4CxhkAqUnODS8Q0lUTIWhvTIMpqwhjjGHOQGJNSFITRs-z1Lu7S-aDGmQRFBCdYYklIImY7ovb6Vi17u9D9Wnlt1dbg-1bpPtrKgWI1NAJLbgptGNSyhIqXZQOII2O4MSnWxzHbYBZQV2lGvXZHQY89nZ2r1q9UKXghSpoC0F0AZ6GFlNxYtSJb4fY-uFRNpQwoQnipCOepiaR6N6bt_d0AIaqFDRU4pzvwQ-qWY0EEYdtu3_yFPjyTkWp1att2jU_VVpug6jxlZOmBSZSo6QNU-mpY2Mp30NhkPxK8PxIkJsLv2OohBDX7_u0_2K__zl7_OmbfHrBz0C7Og3fD5nWHY5DtwKr3IfTQ3P9GjNRmw_aTU5sNU-OGJdmrwydwL9qvFP0DAqkezA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762191922</pqid></control><display><type>article</type><title>Identification of the potential active site of the septal peptidoglycan polymerase FtsW</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Li, Ying ; Boes, Adrien ; Cui, Yuanyuan ; Zhao, Shan ; Liao, Qingzhen ; Gong, Han ; Breukink, Eefjan ; Lutkenhaus, Joe ; Terrak, Mohammed ; Du, Shishen</creator><contributor>Kearns, Daniel B.</contributor><creatorcontrib>Li, Ying ; Boes, Adrien ; Cui, Yuanyuan ; Zhao, Shan ; Liao, Qingzhen ; Gong, Han ; Breukink, Eefjan ; Lutkenhaus, Joe ; Terrak, Mohammed ; Du, Shishen ; Kearns, Daniel B.</creatorcontrib><description>SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009993</identifier><identifier>PMID: 34986161</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Substitution ; Antibiotics ; Bacteria ; Bacteria - enzymology ; Bacteria - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology and Life Sciences ; Catalytic Domain ; Cell division ; Cytokinesis ; E coli ; Life sciences ; Lipids ; Localization ; Medicine and Health Sciences ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microbiologie ; Microbiology ; Models, Molecular ; Morphogenesis ; Mutagenesis, Site-Directed ; Mutation ; Penicillin ; Peptidoglycan - biosynthesis ; Peptidoglycans ; Physical Sciences ; Physiological aspects ; Protein Conformation ; Proteins ; Research and Analysis Methods ; Sciences du vivant ; Sporulation ; Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives ; Uridine Diphosphate N-Acetylmuramic Acid - metabolism</subject><ispartof>PLoS genetics, 2022-01, Vol.18 (1), p.e1009993-e1009993</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Li et al 2022 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c770t-9a7d19b74433a45e44f2e589a6b1804a39279dabbf034d24446116e9112875243</citedby><cites>FETCH-LOGICAL-c770t-9a7d19b74433a45e44f2e589a6b1804a39279dabbf034d24446116e9112875243</cites><orcidid>0000-0003-3837-6778 ; 0000-0002-8228-2114 ; 0000-0002-7311-0660 ; 0000-0002-9809-8653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2762191922/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2762191922?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34986161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kearns, Daniel B.</contributor><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Boes, Adrien</creatorcontrib><creatorcontrib>Cui, Yuanyuan</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Liao, Qingzhen</creatorcontrib><creatorcontrib>Gong, Han</creatorcontrib><creatorcontrib>Breukink, Eefjan</creatorcontrib><creatorcontrib>Lutkenhaus, Joe</creatorcontrib><creatorcontrib>Terrak, Mohammed</creatorcontrib><creatorcontrib>Du, Shishen</creatorcontrib><title>Identification of the potential active site of the septal peptidoglycan polymerase FtsW</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors.</description><subject>Amino Acid Substitution</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Catalytic Domain</subject><subject>Cell division</subject><subject>Cytokinesis</subject><subject>E coli</subject><subject>Life sciences</subject><subject>Lipids</subject><subject>Localization</subject><subject>Medicine and Health Sciences</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microbiologie</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Morphogenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Penicillin</subject><subject>Peptidoglycan - biosynthesis</subject><subject>Peptidoglycans</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Sciences du vivant</subject><subject>Sporulation</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1tv0zAUxyMEYmPwDRBEQkLw0OJb7PgFaZoYVJqYxG2Plp2cpJ7cuIudin573DadWrQHUB5snfP7n1t8suwlRlNMBf5w64e-0266bKGbYoSklPRRdoqLgk4EQ-zxwf0kexbCLUK0KKV4mp1QJkuOOT7NbmY1dNE2ttLR-i73TR7nkC993Ji1y3UV7QryYCPsnQGWMXmW6bC1b9260l1SuPUCeh0gv4zh5nn2pNEuwIvxPMt-Xn76cfFlcnX9eXZxfjWphEBxIrWosTSCMUo1K4CxhkAqUnODS8Q0lUTIWhvTIMpqwhjjGHOQGJNSFITRs-z1Lu7S-aDGmQRFBCdYYklIImY7ovb6Vi17u9D9Wnlt1dbg-1bpPtrKgWI1NAJLbgptGNSyhIqXZQOII2O4MSnWxzHbYBZQV2lGvXZHQY89nZ2r1q9UKXghSpoC0F0AZ6GFlNxYtSJb4fY-uFRNpQwoQnipCOepiaR6N6bt_d0AIaqFDRU4pzvwQ-qWY0EEYdtu3_yFPjyTkWp1att2jU_VVpug6jxlZOmBSZSo6QNU-mpY2Mp30NhkPxK8PxIkJsLv2OohBDX7_u0_2K__zl7_OmbfHrBz0C7Og3fD5nWHY5DtwKr3IfTQ3P9GjNRmw_aTU5sNU-OGJdmrwydwL9qvFP0DAqkezA</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Li, Ying</creator><creator>Boes, Adrien</creator><creator>Cui, Yuanyuan</creator><creator>Zhao, Shan</creator><creator>Liao, Qingzhen</creator><creator>Gong, Han</creator><creator>Breukink, Eefjan</creator><creator>Lutkenhaus, Joe</creator><creator>Terrak, Mohammed</creator><creator>Du, Shishen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>Q33</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3837-6778</orcidid><orcidid>https://orcid.org/0000-0002-8228-2114</orcidid><orcidid>https://orcid.org/0000-0002-7311-0660</orcidid><orcidid>https://orcid.org/0000-0002-9809-8653</orcidid></search><sort><creationdate>20220105</creationdate><title>Identification of the potential active site of the septal peptidoglycan polymerase FtsW</title><author>Li, Ying ; Boes, Adrien ; Cui, Yuanyuan ; Zhao, Shan ; Liao, Qingzhen ; Gong, Han ; Breukink, Eefjan ; Lutkenhaus, Joe ; Terrak, Mohammed ; Du, Shishen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c770t-9a7d19b74433a45e44f2e589a6b1804a39279dabbf034d24446116e9112875243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino Acid Substitution</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Catalytic Domain</topic><topic>Cell division</topic><topic>Cytokinesis</topic><topic>E coli</topic><topic>Life sciences</topic><topic>Lipids</topic><topic>Localization</topic><topic>Medicine and Health Sciences</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microbiologie</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Morphogenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Penicillin</topic><topic>Peptidoglycan - biosynthesis</topic><topic>Peptidoglycans</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Sciences du vivant</topic><topic>Sporulation</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Boes, Adrien</creatorcontrib><creatorcontrib>Cui, Yuanyuan</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Liao, Qingzhen</creatorcontrib><creatorcontrib>Gong, Han</creatorcontrib><creatorcontrib>Breukink, Eefjan</creatorcontrib><creatorcontrib>Lutkenhaus, Joe</creatorcontrib><creatorcontrib>Terrak, Mohammed</creatorcontrib><creatorcontrib>Du, Shishen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale in context Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ying</au><au>Boes, Adrien</au><au>Cui, Yuanyuan</au><au>Zhao, Shan</au><au>Liao, Qingzhen</au><au>Gong, Han</au><au>Breukink, Eefjan</au><au>Lutkenhaus, Joe</au><au>Terrak, Mohammed</au><au>Du, Shishen</au><au>Kearns, Daniel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the potential active site of the septal peptidoglycan polymerase FtsW</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2022-01-05</date><risdate>2022</risdate><volume>18</volume><issue>1</issue><spage>e1009993</spage><epage>e1009993</epage><pages>e1009993-e1009993</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>SEDS (Shape, Elongation, Division and Sporulation) proteins are widely conserved peptidoglycan (PG) glycosyltransferases that form complexes with class B penicillin-binding proteins (bPBPs, with transpeptidase activity) to synthesize PG during bacterial cell growth and division. Because of their crucial roles in bacterial morphogenesis, SEDS proteins are one of the most promising targets for the development of new antibiotics. However, how SEDS proteins recognize their substrate lipid II, the building block of the PG layer, and polymerize it into glycan strands is still not clear. In this study, we isolated and characterized dominant-negative alleles of FtsW, a SEDS protein critical for septal PG synthesis during bacterial cytokinesis. Interestingly, most of the dominant-negative FtsW mutations reside in extracellular loops that are highly conserved in the SEDS family. Moreover, these mutations are scattered around a central cavity in a modeled FtsW structure, which has been proposed to be the active site of SEDS proteins. Consistent with this, we found that these mutations blocked septal PG synthesis but did not affect FtsW localization to the division site, interaction with its partners nor its substrate lipid II. Taken together, these results suggest that the residues corresponding to the dominant-negative mutations likely constitute the active site of FtsW, which may aid in the design of FtsW inhibitors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34986161</pmid><doi>10.1371/journal.pgen.1009993</doi><orcidid>https://orcid.org/0000-0003-3837-6778</orcidid><orcidid>https://orcid.org/0000-0002-8228-2114</orcidid><orcidid>https://orcid.org/0000-0002-7311-0660</orcidid><orcidid>https://orcid.org/0000-0002-9809-8653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2022-01, Vol.18 (1), p.e1009993-e1009993
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2762191922
source PubMed (Medline); Publicly Available Content Database
subjects Amino Acid Substitution
Antibiotics
Bacteria
Bacteria - enzymology
Bacteria - genetics
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biology and Life Sciences
Catalytic Domain
Cell division
Cytokinesis
E coli
Life sciences
Lipids
Localization
Medicine and Health Sciences
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Microbiologie
Microbiology
Models, Molecular
Morphogenesis
Mutagenesis, Site-Directed
Mutation
Penicillin
Peptidoglycan - biosynthesis
Peptidoglycans
Physical Sciences
Physiological aspects
Protein Conformation
Proteins
Research and Analysis Methods
Sciences du vivant
Sporulation
Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives
Uridine Diphosphate N-Acetylmuramic Acid - metabolism
title Identification of the potential active site of the septal peptidoglycan polymerase FtsW
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20potential%20active%20site%20of%20the%20septal%20peptidoglycan%20polymerase%20FtsW&rft.jtitle=PLoS%20genetics&rft.au=Li,%20Ying&rft.date=2022-01-05&rft.volume=18&rft.issue=1&rft.spage=e1009993&rft.epage=e1009993&rft.pages=e1009993-e1009993&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009993&rft_dat=%3Cgale_plos_%3EA691413790%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c770t-9a7d19b74433a45e44f2e589a6b1804a39279dabbf034d24446116e9112875243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2762191922&rft_id=info:pmid/34986161&rft_galeid=A691413790&rfr_iscdi=true