Loading…
Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy
Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells de...
Saved in:
Published in: | PLoS genetics 2022-01, Vol.18 (1), p.e1010018-e1010018 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63 |
---|---|
cites | cdi_FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63 |
container_end_page | e1010018 |
container_issue | 1 |
container_start_page | e1010018 |
container_title | PLoS genetics |
container_volume | 18 |
creator | Cheng, Jianghong Liang, Jia Li, Yingzhe Gao, Xia Ji, Mengjun Liu, Mengying Tian, Yingpu Feng, Gensheng Deng, Wenbo Wang, Haibin Kong, Shuangbo Lu, Zhongxian |
description | Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure. |
doi_str_mv | 10.1371/journal.pgen.1010018 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2762192014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691413712</galeid><doaj_id>oai_doaj_org_article_1b296c4557cf43418779f0c2c2a1aad1</doaj_id><sourcerecordid>A691413712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63</originalsourceid><addsrcrecordid>eNqVk9-K1DAUxoso7rr6BqIBQfRixqRNk_ZGWBb_DCwuuOptOE3TToY0qUmqjg_i85pxZocZ2QulFyk5v_N9yTk5WfaY4DkpOHm1cpO3YOZjr-ycYIIxqe5kp6QsixmnmN49-D_JHoSwwrgoq5rfz06KEudlxarT7Nf1csyRtmiKymurUIjeDWCQVMYEJL2OWoIxa-RVPxmIKiBnUdSDQmpo_NohPYwGbISoUwBsu5doldTtBEb_3MaaNRomE_VoFBohLr_DOqB2SrY9UuCTx5hMLFi5fpjd68AE9Wi3nmWf3775dPF-dnn1bnFxfjmTPGdx1jCoGi4xLoksG4YZEM5ryijFvKQ5o10lMbQcc2CpPqps6qbmXdcQVhaqZcVZ9nSrOxoXxK6kQeSc5aTOMaGJWGyJ1sFKjF4P4NfCgRZ_NpzvBfhUI6MEafKaSVqWXHa0oKRKZ-mwzGUOBKAlSev1zm1qBtVKZaMHcyR6HLF6KXr3TVS8JrQqksCLnYB3XycVohh02HQKrHJTOjfLMa4IruqEPvsLvf12O6qHdAFtO5d85UZUnLPkuXlpeaLmt1Dpa9WgpbOq02n_KOHlUUJiovoRe5hCEIvrj__Bfvh39urLMfv8gF0qMHEZnJk2TzEcg3QLSu9C8KrbN4RgsUFuKic2oyZ2o5bSnhw2c590M1vFb21jJRE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762192014</pqid></control><display><type>article</type><title>Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Cheng, Jianghong ; Liang, Jia ; Li, Yingzhe ; Gao, Xia ; Ji, Mengjun ; Liu, Mengying ; Tian, Yingpu ; Feng, Gensheng ; Deng, Wenbo ; Wang, Haibin ; Kong, Shuangbo ; Lu, Zhongxian</creator><contributor>Murphy, Bruce Daniel</contributor><creatorcontrib>Cheng, Jianghong ; Liang, Jia ; Li, Yingzhe ; Gao, Xia ; Ji, Mengjun ; Liu, Mengying ; Tian, Yingpu ; Feng, Gensheng ; Deng, Wenbo ; Wang, Haibin ; Kong, Shuangbo ; Lu, Zhongxian ; Murphy, Bruce Daniel</creatorcontrib><description>Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010018</identifier><identifier>PMID: 35025868</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Adenosine ; AKT protein ; Animals ; Biology and Life Sciences ; Cancer ; CCAAT/enhancer-binding protein ; Cell growth ; Cell Line ; Cell Proliferation ; Decidua ; Decidua - metabolism ; Embryo Implantation ; Embryos ; Endometrium ; Epithelial cells ; Estrogens ; Extracellular signal-regulated kinase ; Female ; Females ; Fertility ; Forkhead protein ; Gene Deletion ; Gene expression ; Gene Expression Profiling ; Growth factors ; Humans ; Implantation ; Infertility ; Kinases ; Leukemia ; Medicine and Health Sciences ; Metabolic disorders ; Mice ; Ovaries ; Physiological aspects ; Physiology ; Polyploidy ; Pregnancy ; Protein expression ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism ; Proteins ; Research and Analysis Methods ; Signal Transduction ; Stat3 protein ; Stem cells ; Stromal cells ; Stromal Cells - cytology ; Stromal Cells - metabolism ; Therapeutic targets ; Transcription factors ; Uterus ; Uterus - cytology ; Uterus - metabolism ; Vagina</subject><ispartof>PLoS genetics, 2022-01, Vol.18 (1), p.e1010018-e1010018</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Cheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Cheng et al 2022 Cheng et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63</citedby><cites>FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63</cites><orcidid>0000-0002-3219-2858 ; 0000-0002-1682-7147 ; 0000-0002-6995-8028 ; 0000-0002-9865-324X ; 0000-0002-5987-1287 ; 0000-0002-7513-4041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2762192014/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2762192014?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35025868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Murphy, Bruce Daniel</contributor><creatorcontrib>Cheng, Jianghong</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Li, Yingzhe</creatorcontrib><creatorcontrib>Gao, Xia</creatorcontrib><creatorcontrib>Ji, Mengjun</creatorcontrib><creatorcontrib>Liu, Mengying</creatorcontrib><creatorcontrib>Tian, Yingpu</creatorcontrib><creatorcontrib>Feng, Gensheng</creatorcontrib><creatorcontrib>Deng, Wenbo</creatorcontrib><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Kong, Shuangbo</creatorcontrib><creatorcontrib>Lu, Zhongxian</creatorcontrib><title>Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.</description><subject>Ablation</subject><subject>Adenosine</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>CCAAT/enhancer-binding protein</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Decidua</subject><subject>Decidua - metabolism</subject><subject>Embryo Implantation</subject><subject>Embryos</subject><subject>Endometrium</subject><subject>Epithelial cells</subject><subject>Estrogens</subject><subject>Extracellular signal-regulated kinase</subject><subject>Female</subject><subject>Females</subject><subject>Fertility</subject><subject>Forkhead protein</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Implantation</subject><subject>Infertility</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic disorders</subject><subject>Mice</subject><subject>Ovaries</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Polyploidy</subject><subject>Pregnancy</subject><subject>Protein expression</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Signal Transduction</subject><subject>Stat3 protein</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Stromal Cells - cytology</subject><subject>Stromal Cells - metabolism</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><subject>Uterus</subject><subject>Uterus - cytology</subject><subject>Uterus - metabolism</subject><subject>Vagina</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-K1DAUxoso7rr6BqIBQfRixqRNk_ZGWBb_DCwuuOptOE3TToY0qUmqjg_i85pxZocZ2QulFyk5v_N9yTk5WfaY4DkpOHm1cpO3YOZjr-ycYIIxqe5kp6QsixmnmN49-D_JHoSwwrgoq5rfz06KEudlxarT7Nf1csyRtmiKymurUIjeDWCQVMYEJL2OWoIxa-RVPxmIKiBnUdSDQmpo_NohPYwGbISoUwBsu5doldTtBEb_3MaaNRomE_VoFBohLr_DOqB2SrY9UuCTx5hMLFi5fpjd68AE9Wi3nmWf3775dPF-dnn1bnFxfjmTPGdx1jCoGi4xLoksG4YZEM5ryijFvKQ5o10lMbQcc2CpPqps6qbmXdcQVhaqZcVZ9nSrOxoXxK6kQeSc5aTOMaGJWGyJ1sFKjF4P4NfCgRZ_NpzvBfhUI6MEafKaSVqWXHa0oKRKZ-mwzGUOBKAlSev1zm1qBtVKZaMHcyR6HLF6KXr3TVS8JrQqksCLnYB3XycVohh02HQKrHJTOjfLMa4IruqEPvsLvf12O6qHdAFtO5d85UZUnLPkuXlpeaLmt1Dpa9WgpbOq02n_KOHlUUJiovoRe5hCEIvrj__Bfvh39urLMfv8gF0qMHEZnJk2TzEcg3QLSu9C8KrbN4RgsUFuKic2oyZ2o5bSnhw2c590M1vFb21jJRE</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Cheng, Jianghong</creator><creator>Liang, Jia</creator><creator>Li, Yingzhe</creator><creator>Gao, Xia</creator><creator>Ji, Mengjun</creator><creator>Liu, Mengying</creator><creator>Tian, Yingpu</creator><creator>Feng, Gensheng</creator><creator>Deng, Wenbo</creator><creator>Wang, Haibin</creator><creator>Kong, Shuangbo</creator><creator>Lu, Zhongxian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3219-2858</orcidid><orcidid>https://orcid.org/0000-0002-1682-7147</orcidid><orcidid>https://orcid.org/0000-0002-6995-8028</orcidid><orcidid>https://orcid.org/0000-0002-9865-324X</orcidid><orcidid>https://orcid.org/0000-0002-5987-1287</orcidid><orcidid>https://orcid.org/0000-0002-7513-4041</orcidid></search><sort><creationdate>20220113</creationdate><title>Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy</title><author>Cheng, Jianghong ; Liang, Jia ; Li, Yingzhe ; Gao, Xia ; Ji, Mengjun ; Liu, Mengying ; Tian, Yingpu ; Feng, Gensheng ; Deng, Wenbo ; Wang, Haibin ; Kong, Shuangbo ; Lu, Zhongxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Adenosine</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>CCAAT/enhancer-binding protein</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Decidua</topic><topic>Decidua - metabolism</topic><topic>Embryo Implantation</topic><topic>Embryos</topic><topic>Endometrium</topic><topic>Epithelial cells</topic><topic>Estrogens</topic><topic>Extracellular signal-regulated kinase</topic><topic>Female</topic><topic>Females</topic><topic>Fertility</topic><topic>Forkhead protein</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Implantation</topic><topic>Infertility</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic disorders</topic><topic>Mice</topic><topic>Ovaries</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Polyploidy</topic><topic>Pregnancy</topic><topic>Protein expression</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Signal Transduction</topic><topic>Stat3 protein</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Stromal Cells - cytology</topic><topic>Stromal Cells - metabolism</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><topic>Uterus</topic><topic>Uterus - cytology</topic><topic>Uterus - metabolism</topic><topic>Vagina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jianghong</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Li, Yingzhe</creatorcontrib><creatorcontrib>Gao, Xia</creatorcontrib><creatorcontrib>Ji, Mengjun</creatorcontrib><creatorcontrib>Liu, Mengying</creatorcontrib><creatorcontrib>Tian, Yingpu</creatorcontrib><creatorcontrib>Feng, Gensheng</creatorcontrib><creatorcontrib>Deng, Wenbo</creatorcontrib><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Kong, Shuangbo</creatorcontrib><creatorcontrib>Lu, Zhongxian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Jianghong</au><au>Liang, Jia</au><au>Li, Yingzhe</au><au>Gao, Xia</au><au>Ji, Mengjun</au><au>Liu, Mengying</au><au>Tian, Yingpu</au><au>Feng, Gensheng</au><au>Deng, Wenbo</au><au>Wang, Haibin</au><au>Kong, Shuangbo</au><au>Lu, Zhongxian</au><au>Murphy, Bruce Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2022-01-13</date><risdate>2022</risdate><volume>18</volume><issue>1</issue><spage>e1010018</spage><epage>e1010018</epage><pages>e1010018-e1010018</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35025868</pmid><doi>10.1371/journal.pgen.1010018</doi><orcidid>https://orcid.org/0000-0002-3219-2858</orcidid><orcidid>https://orcid.org/0000-0002-1682-7147</orcidid><orcidid>https://orcid.org/0000-0002-6995-8028</orcidid><orcidid>https://orcid.org/0000-0002-9865-324X</orcidid><orcidid>https://orcid.org/0000-0002-5987-1287</orcidid><orcidid>https://orcid.org/0000-0002-7513-4041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2022-01, Vol.18 (1), p.e1010018-e1010018 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2762192014 |
source | PubMed Central (Open Access); Publicly Available Content Database |
subjects | Ablation Adenosine AKT protein Animals Biology and Life Sciences Cancer CCAAT/enhancer-binding protein Cell growth Cell Line Cell Proliferation Decidua Decidua - metabolism Embryo Implantation Embryos Endometrium Epithelial cells Estrogens Extracellular signal-regulated kinase Female Females Fertility Forkhead protein Gene Deletion Gene expression Gene Expression Profiling Growth factors Humans Implantation Infertility Kinases Leukemia Medicine and Health Sciences Metabolic disorders Mice Ovaries Physiological aspects Physiology Polyploidy Pregnancy Protein expression Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism Proteins Research and Analysis Methods Signal Transduction Stat3 protein Stem cells Stromal cells Stromal Cells - cytology Stromal Cells - metabolism Therapeutic targets Transcription factors Uterus Uterus - cytology Uterus - metabolism Vagina |
title | Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shp2%20in%20uterine%20stromal%20cells%20critically%20regulates%20on%20time%20embryo%20implantation%20and%20stromal%20decidualization%20by%20multiple%20pathways%20during%20early%20pregnancy&rft.jtitle=PLoS%20genetics&rft.au=Cheng,%20Jianghong&rft.date=2022-01-13&rft.volume=18&rft.issue=1&rft.spage=e1010018&rft.epage=e1010018&rft.pages=e1010018-e1010018&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010018&rft_dat=%3Cgale_plos_%3EA691413712%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2762192014&rft_id=info:pmid/35025868&rft_galeid=A691413712&rfr_iscdi=true |