Loading…

Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy

Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells de...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2022-01, Vol.18 (1), p.e1010018-e1010018
Main Authors: Cheng, Jianghong, Liang, Jia, Li, Yingzhe, Gao, Xia, Ji, Mengjun, Liu, Mengying, Tian, Yingpu, Feng, Gensheng, Deng, Wenbo, Wang, Haibin, Kong, Shuangbo, Lu, Zhongxian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63
cites cdi_FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63
container_end_page e1010018
container_issue 1
container_start_page e1010018
container_title PLoS genetics
container_volume 18
creator Cheng, Jianghong
Liang, Jia
Li, Yingzhe
Gao, Xia
Ji, Mengjun
Liu, Mengying
Tian, Yingpu
Feng, Gensheng
Deng, Wenbo
Wang, Haibin
Kong, Shuangbo
Lu, Zhongxian
description Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.
doi_str_mv 10.1371/journal.pgen.1010018
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2762192014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691413712</galeid><doaj_id>oai_doaj_org_article_1b296c4557cf43418779f0c2c2a1aad1</doaj_id><sourcerecordid>A691413712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63</originalsourceid><addsrcrecordid>eNqVk9-K1DAUxoso7rr6BqIBQfRixqRNk_ZGWBb_DCwuuOptOE3TToY0qUmqjg_i85pxZocZ2QulFyk5v_N9yTk5WfaY4DkpOHm1cpO3YOZjr-ycYIIxqe5kp6QsixmnmN49-D_JHoSwwrgoq5rfz06KEudlxarT7Nf1csyRtmiKymurUIjeDWCQVMYEJL2OWoIxa-RVPxmIKiBnUdSDQmpo_NohPYwGbISoUwBsu5doldTtBEb_3MaaNRomE_VoFBohLr_DOqB2SrY9UuCTx5hMLFi5fpjd68AE9Wi3nmWf3775dPF-dnn1bnFxfjmTPGdx1jCoGi4xLoksG4YZEM5ryijFvKQ5o10lMbQcc2CpPqps6qbmXdcQVhaqZcVZ9nSrOxoXxK6kQeSc5aTOMaGJWGyJ1sFKjF4P4NfCgRZ_NpzvBfhUI6MEafKaSVqWXHa0oKRKZ-mwzGUOBKAlSev1zm1qBtVKZaMHcyR6HLF6KXr3TVS8JrQqksCLnYB3XycVohh02HQKrHJTOjfLMa4IruqEPvsLvf12O6qHdAFtO5d85UZUnLPkuXlpeaLmt1Dpa9WgpbOq02n_KOHlUUJiovoRe5hCEIvrj__Bfvh39urLMfv8gF0qMHEZnJk2TzEcg3QLSu9C8KrbN4RgsUFuKic2oyZ2o5bSnhw2c590M1vFb21jJRE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762192014</pqid></control><display><type>article</type><title>Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Cheng, Jianghong ; Liang, Jia ; Li, Yingzhe ; Gao, Xia ; Ji, Mengjun ; Liu, Mengying ; Tian, Yingpu ; Feng, Gensheng ; Deng, Wenbo ; Wang, Haibin ; Kong, Shuangbo ; Lu, Zhongxian</creator><contributor>Murphy, Bruce Daniel</contributor><creatorcontrib>Cheng, Jianghong ; Liang, Jia ; Li, Yingzhe ; Gao, Xia ; Ji, Mengjun ; Liu, Mengying ; Tian, Yingpu ; Feng, Gensheng ; Deng, Wenbo ; Wang, Haibin ; Kong, Shuangbo ; Lu, Zhongxian ; Murphy, Bruce Daniel</creatorcontrib><description>Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1010018</identifier><identifier>PMID: 35025868</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Adenosine ; AKT protein ; Animals ; Biology and Life Sciences ; Cancer ; CCAAT/enhancer-binding protein ; Cell growth ; Cell Line ; Cell Proliferation ; Decidua ; Decidua - metabolism ; Embryo Implantation ; Embryos ; Endometrium ; Epithelial cells ; Estrogens ; Extracellular signal-regulated kinase ; Female ; Females ; Fertility ; Forkhead protein ; Gene Deletion ; Gene expression ; Gene Expression Profiling ; Growth factors ; Humans ; Implantation ; Infertility ; Kinases ; Leukemia ; Medicine and Health Sciences ; Metabolic disorders ; Mice ; Ovaries ; Physiological aspects ; Physiology ; Polyploidy ; Pregnancy ; Protein expression ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism ; Proteins ; Research and Analysis Methods ; Signal Transduction ; Stat3 protein ; Stem cells ; Stromal cells ; Stromal Cells - cytology ; Stromal Cells - metabolism ; Therapeutic targets ; Transcription factors ; Uterus ; Uterus - cytology ; Uterus - metabolism ; Vagina</subject><ispartof>PLoS genetics, 2022-01, Vol.18 (1), p.e1010018-e1010018</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><rights>2022 Cheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Cheng et al 2022 Cheng et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63</citedby><cites>FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63</cites><orcidid>0000-0002-3219-2858 ; 0000-0002-1682-7147 ; 0000-0002-6995-8028 ; 0000-0002-9865-324X ; 0000-0002-5987-1287 ; 0000-0002-7513-4041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2762192014/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2762192014?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35025868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Murphy, Bruce Daniel</contributor><creatorcontrib>Cheng, Jianghong</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Li, Yingzhe</creatorcontrib><creatorcontrib>Gao, Xia</creatorcontrib><creatorcontrib>Ji, Mengjun</creatorcontrib><creatorcontrib>Liu, Mengying</creatorcontrib><creatorcontrib>Tian, Yingpu</creatorcontrib><creatorcontrib>Feng, Gensheng</creatorcontrib><creatorcontrib>Deng, Wenbo</creatorcontrib><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Kong, Shuangbo</creatorcontrib><creatorcontrib>Lu, Zhongxian</creatorcontrib><title>Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.</description><subject>Ablation</subject><subject>Adenosine</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>CCAAT/enhancer-binding protein</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Decidua</subject><subject>Decidua - metabolism</subject><subject>Embryo Implantation</subject><subject>Embryos</subject><subject>Endometrium</subject><subject>Epithelial cells</subject><subject>Estrogens</subject><subject>Extracellular signal-regulated kinase</subject><subject>Female</subject><subject>Females</subject><subject>Fertility</subject><subject>Forkhead protein</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Implantation</subject><subject>Infertility</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic disorders</subject><subject>Mice</subject><subject>Ovaries</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Polyploidy</subject><subject>Pregnancy</subject><subject>Protein expression</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Signal Transduction</subject><subject>Stat3 protein</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Stromal Cells - cytology</subject><subject>Stromal Cells - metabolism</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><subject>Uterus</subject><subject>Uterus - cytology</subject><subject>Uterus - metabolism</subject><subject>Vagina</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-K1DAUxoso7rr6BqIBQfRixqRNk_ZGWBb_DCwuuOptOE3TToY0qUmqjg_i85pxZocZ2QulFyk5v_N9yTk5WfaY4DkpOHm1cpO3YOZjr-ycYIIxqe5kp6QsixmnmN49-D_JHoSwwrgoq5rfz06KEudlxarT7Nf1csyRtmiKymurUIjeDWCQVMYEJL2OWoIxa-RVPxmIKiBnUdSDQmpo_NohPYwGbISoUwBsu5doldTtBEb_3MaaNRomE_VoFBohLr_DOqB2SrY9UuCTx5hMLFi5fpjd68AE9Wi3nmWf3775dPF-dnn1bnFxfjmTPGdx1jCoGi4xLoksG4YZEM5ryijFvKQ5o10lMbQcc2CpPqps6qbmXdcQVhaqZcVZ9nSrOxoXxK6kQeSc5aTOMaGJWGyJ1sFKjF4P4NfCgRZ_NpzvBfhUI6MEafKaSVqWXHa0oKRKZ-mwzGUOBKAlSev1zm1qBtVKZaMHcyR6HLF6KXr3TVS8JrQqksCLnYB3XycVohh02HQKrHJTOjfLMa4IruqEPvsLvf12O6qHdAFtO5d85UZUnLPkuXlpeaLmt1Dpa9WgpbOq02n_KOHlUUJiovoRe5hCEIvrj__Bfvh39urLMfv8gF0qMHEZnJk2TzEcg3QLSu9C8KrbN4RgsUFuKic2oyZ2o5bSnhw2c590M1vFb21jJRE</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Cheng, Jianghong</creator><creator>Liang, Jia</creator><creator>Li, Yingzhe</creator><creator>Gao, Xia</creator><creator>Ji, Mengjun</creator><creator>Liu, Mengying</creator><creator>Tian, Yingpu</creator><creator>Feng, Gensheng</creator><creator>Deng, Wenbo</creator><creator>Wang, Haibin</creator><creator>Kong, Shuangbo</creator><creator>Lu, Zhongxian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3219-2858</orcidid><orcidid>https://orcid.org/0000-0002-1682-7147</orcidid><orcidid>https://orcid.org/0000-0002-6995-8028</orcidid><orcidid>https://orcid.org/0000-0002-9865-324X</orcidid><orcidid>https://orcid.org/0000-0002-5987-1287</orcidid><orcidid>https://orcid.org/0000-0002-7513-4041</orcidid></search><sort><creationdate>20220113</creationdate><title>Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy</title><author>Cheng, Jianghong ; Liang, Jia ; Li, Yingzhe ; Gao, Xia ; Ji, Mengjun ; Liu, Mengying ; Tian, Yingpu ; Feng, Gensheng ; Deng, Wenbo ; Wang, Haibin ; Kong, Shuangbo ; Lu, Zhongxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Adenosine</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>CCAAT/enhancer-binding protein</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Decidua</topic><topic>Decidua - metabolism</topic><topic>Embryo Implantation</topic><topic>Embryos</topic><topic>Endometrium</topic><topic>Epithelial cells</topic><topic>Estrogens</topic><topic>Extracellular signal-regulated kinase</topic><topic>Female</topic><topic>Females</topic><topic>Fertility</topic><topic>Forkhead protein</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Implantation</topic><topic>Infertility</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic disorders</topic><topic>Mice</topic><topic>Ovaries</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Polyploidy</topic><topic>Pregnancy</topic><topic>Protein expression</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Signal Transduction</topic><topic>Stat3 protein</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Stromal Cells - cytology</topic><topic>Stromal Cells - metabolism</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><topic>Uterus</topic><topic>Uterus - cytology</topic><topic>Uterus - metabolism</topic><topic>Vagina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jianghong</creatorcontrib><creatorcontrib>Liang, Jia</creatorcontrib><creatorcontrib>Li, Yingzhe</creatorcontrib><creatorcontrib>Gao, Xia</creatorcontrib><creatorcontrib>Ji, Mengjun</creatorcontrib><creatorcontrib>Liu, Mengying</creatorcontrib><creatorcontrib>Tian, Yingpu</creatorcontrib><creatorcontrib>Feng, Gensheng</creatorcontrib><creatorcontrib>Deng, Wenbo</creatorcontrib><creatorcontrib>Wang, Haibin</creatorcontrib><creatorcontrib>Kong, Shuangbo</creatorcontrib><creatorcontrib>Lu, Zhongxian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Jianghong</au><au>Liang, Jia</au><au>Li, Yingzhe</au><au>Gao, Xia</au><au>Ji, Mengjun</au><au>Liu, Mengying</au><au>Tian, Yingpu</au><au>Feng, Gensheng</au><au>Deng, Wenbo</au><au>Wang, Haibin</au><au>Kong, Shuangbo</au><au>Lu, Zhongxian</au><au>Murphy, Bruce Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2022-01-13</date><risdate>2022</risdate><volume>18</volume><issue>1</issue><spage>e1010018</spage><epage>e1010018</epage><pages>e1010018-e1010018</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>35025868</pmid><doi>10.1371/journal.pgen.1010018</doi><orcidid>https://orcid.org/0000-0002-3219-2858</orcidid><orcidid>https://orcid.org/0000-0002-1682-7147</orcidid><orcidid>https://orcid.org/0000-0002-6995-8028</orcidid><orcidid>https://orcid.org/0000-0002-9865-324X</orcidid><orcidid>https://orcid.org/0000-0002-5987-1287</orcidid><orcidid>https://orcid.org/0000-0002-7513-4041</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2022-01, Vol.18 (1), p.e1010018-e1010018
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2762192014
source PubMed Central (Open Access); Publicly Available Content Database
subjects Ablation
Adenosine
AKT protein
Animals
Biology and Life Sciences
Cancer
CCAAT/enhancer-binding protein
Cell growth
Cell Line
Cell Proliferation
Decidua
Decidua - metabolism
Embryo Implantation
Embryos
Endometrium
Epithelial cells
Estrogens
Extracellular signal-regulated kinase
Female
Females
Fertility
Forkhead protein
Gene Deletion
Gene expression
Gene Expression Profiling
Growth factors
Humans
Implantation
Infertility
Kinases
Leukemia
Medicine and Health Sciences
Metabolic disorders
Mice
Ovaries
Physiological aspects
Physiology
Polyploidy
Pregnancy
Protein expression
Protein Tyrosine Phosphatase, Non-Receptor Type 11 - genetics
Protein Tyrosine Phosphatase, Non-Receptor Type 11 - metabolism
Proteins
Research and Analysis Methods
Signal Transduction
Stat3 protein
Stem cells
Stromal cells
Stromal Cells - cytology
Stromal Cells - metabolism
Therapeutic targets
Transcription factors
Uterus
Uterus - cytology
Uterus - metabolism
Vagina
title Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shp2%20in%20uterine%20stromal%20cells%20critically%20regulates%20on%20time%20embryo%20implantation%20and%20stromal%20decidualization%20by%20multiple%20pathways%20during%20early%20pregnancy&rft.jtitle=PLoS%20genetics&rft.au=Cheng,%20Jianghong&rft.date=2022-01-13&rft.volume=18&rft.issue=1&rft.spage=e1010018&rft.epage=e1010018&rft.pages=e1010018-e1010018&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1010018&rft_dat=%3Cgale_plos_%3EA691413712%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-b6a8b7c0051c5b606a177946440754264f8c0ad707a6001e5b9b97ffb1653ed63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2762192014&rft_id=info:pmid/35025868&rft_galeid=A691413712&rfr_iscdi=true