Loading…
Modelling of thrombus formation using smoothed particle hydrodynamics method
In this paper a novel model, based on the smoothed particle hydrodynamics (SPH) method, is proposed to simulate thrombus formation. This describes the main phases of the coagulative cascade through the balance of four biochemical species and three type of platelets. SPH particles can switch from flu...
Saved in:
Published in: | PloS one 2023-02, Vol.18 (2), p.e0281424-e0281424 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper a novel model, based on the smoothed particle hydrodynamics (SPH) method, is proposed to simulate thrombus formation. This describes the main phases of the coagulative cascade through the balance of four biochemical species and three type of platelets. SPH particles can switch from fluid to solid phase when specific biochemical and physical conditions are satisfied. The interaction between blood and the forming blood clot is easily handled by an innovative monolithic FSI approach. Fluid-solid coupling is modelled by introducing elastic binds between solid particles, without requiring detention and management of the interface between the two media. The proposed model is able to realistically reproduce the thromboembolic process, as confirmed by the comparison of numerical results with experimental data available in the literature. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0281424 |