Loading…

Predicting critical transitions in assortative spin-shifting networks

Methods to forecast critical transitions, i.e. abrupt changes in systems' equilibrium states have relevance in scientific fields such as ecology, seismology, finance and medicine among others. So far, the bulk of investigations on forecasting methods builds on equation-based modeling methods, w...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-02, Vol.18 (2), p.e0275183-e0275183
Main Authors: Füllsack, Manfred, Reisinger, Daniel, Adam, Raven, Kapeller, Marie, Jäger, Georg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-3e9b3b5b698cfeb42c68841d69eca191924dbfcc6f9b24df7d2a632a666e5aaa3
cites cdi_FETCH-LOGICAL-c456t-3e9b3b5b698cfeb42c68841d69eca191924dbfcc6f9b24df7d2a632a666e5aaa3
container_end_page e0275183
container_issue 2
container_start_page e0275183
container_title PloS one
container_volume 18
creator Füllsack, Manfred
Reisinger, Daniel
Adam, Raven
Kapeller, Marie
Jäger, Georg
description Methods to forecast critical transitions, i.e. abrupt changes in systems' equilibrium states have relevance in scientific fields such as ecology, seismology, finance and medicine among others. So far, the bulk of investigations on forecasting methods builds on equation-based modeling methods, which consider system states as aggregates and thus do not account for the different connection strengths in each part of the system. This seems inadequate against the background of studies that insinuate that critical transitions can originate in sparsely connected parts of systems. Here we use agent-based spin-shifting models with assortative network representations to distinguish different interaction densities. Our investigations confirm that signals of imminent critical transitions can indeed be detected significantly earlier in network parts with low link degrees. We discuss the reason for this circumstance on the basis of the free energy principle.
doi_str_mv 10.1371/journal.pone.0275183
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2777358479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4e682e7733b1420281ad47be2bcf441d</doaj_id><sourcerecordid>2777358479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-3e9b3b5b698cfeb42c68841d69eca191924dbfcc6f9b24df7d2a632a666e5aaa3</originalsourceid><addsrcrecordid>eNptUk1P3DAQtSqqQmn_AWojcekl2_gjdnyphBAtSEjtoT1bY2eyeMnaWzsL6r-vYQMCxMHyyH7vzbzRI-SINgvKFf26itsUYFxsYsBFw1RLO_6GHFDNWS1Zw_ee1Pvkfc6rpml5J-U7ss-l0q0S_ICc_UrYezf5sKxc8pN3MFZTgpBLHUOufKgg55gmmPwNVnnjQ52v_HDPCDjdxnSdP5C3A4wZP873Ifnz_ez36Xl9-fPHxenJZe1EK6eao7bctlbqzg1oBXOy6wTtpUYHVFPNRG8H5-SgbSkH1TOQvBwpsQUAfkg-73Q3Y8xm3kA2TCnF204oXRAXO0QfYWU2ya8h_TMRvLl_iGlpIBWXIxqBsmNYmNxSwRrWUeiFssisG0SZqmh9m7tt7Rp7h6EsZnwm-vwn-CuzjDdGay4440XgyyyQ4t8t5smsfXY4jhAwbndzi0YwKgr0-AX0dXdih3Ip5pxweByGNuYuFQ8sc5cKM6ei0D49NfJIeogB_w8EL7d-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777358479</pqid></control><display><type>article</type><title>Predicting critical transitions in assortative spin-shifting networks</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Füllsack, Manfred ; Reisinger, Daniel ; Adam, Raven ; Kapeller, Marie ; Jäger, Georg</creator><contributor>Bouffanais, Roland</contributor><creatorcontrib>Füllsack, Manfred ; Reisinger, Daniel ; Adam, Raven ; Kapeller, Marie ; Jäger, Georg ; Bouffanais, Roland</creatorcontrib><description>Methods to forecast critical transitions, i.e. abrupt changes in systems' equilibrium states have relevance in scientific fields such as ecology, seismology, finance and medicine among others. So far, the bulk of investigations on forecasting methods builds on equation-based modeling methods, which consider system states as aggregates and thus do not account for the different connection strengths in each part of the system. This seems inadequate against the background of studies that insinuate that critical transitions can originate in sparsely connected parts of systems. Here we use agent-based spin-shifting models with assortative network representations to distinguish different interaction densities. Our investigations confirm that signals of imminent critical transitions can indeed be detected significantly earlier in network parts with low link degrees. We discuss the reason for this circumstance on the basis of the free energy principle.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0275183</identifier><identifier>PMID: 36795743</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Computer and Information Sciences ; Earth Sciences ; Ecology ; Equilibrium ; Forecasting ; Free energy ; Influence ; Mathematical models ; Medicine ; Neighborhoods ; Phase transitions ; Physical Sciences ; Seismology ; Skewness ; Social Sciences</subject><ispartof>PloS one, 2023-02, Vol.18 (2), p.e0275183-e0275183</ispartof><rights>Copyright: © 2023 Füllsack et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2023 Füllsack et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Füllsack et al 2023 Füllsack et al</rights><rights>2023 Füllsack et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-3e9b3b5b698cfeb42c68841d69eca191924dbfcc6f9b24df7d2a632a666e5aaa3</citedby><cites>FETCH-LOGICAL-c456t-3e9b3b5b698cfeb42c68841d69eca191924dbfcc6f9b24df7d2a632a666e5aaa3</cites><orcidid>0000-0002-1650-3708 ; 0000-0002-7772-4061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2777358479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2777358479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36795743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bouffanais, Roland</contributor><creatorcontrib>Füllsack, Manfred</creatorcontrib><creatorcontrib>Reisinger, Daniel</creatorcontrib><creatorcontrib>Adam, Raven</creatorcontrib><creatorcontrib>Kapeller, Marie</creatorcontrib><creatorcontrib>Jäger, Georg</creatorcontrib><title>Predicting critical transitions in assortative spin-shifting networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Methods to forecast critical transitions, i.e. abrupt changes in systems' equilibrium states have relevance in scientific fields such as ecology, seismology, finance and medicine among others. So far, the bulk of investigations on forecasting methods builds on equation-based modeling methods, which consider system states as aggregates and thus do not account for the different connection strengths in each part of the system. This seems inadequate against the background of studies that insinuate that critical transitions can originate in sparsely connected parts of systems. Here we use agent-based spin-shifting models with assortative network representations to distinguish different interaction densities. Our investigations confirm that signals of imminent critical transitions can indeed be detected significantly earlier in network parts with low link degrees. We discuss the reason for this circumstance on the basis of the free energy principle.</description><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Equilibrium</subject><subject>Forecasting</subject><subject>Free energy</subject><subject>Influence</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Neighborhoods</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>Seismology</subject><subject>Skewness</subject><subject>Social Sciences</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1P3DAQtSqqQmn_AWojcekl2_gjdnyphBAtSEjtoT1bY2eyeMnaWzsL6r-vYQMCxMHyyH7vzbzRI-SINgvKFf26itsUYFxsYsBFw1RLO_6GHFDNWS1Zw_ee1Pvkfc6rpml5J-U7ss-l0q0S_ICc_UrYezf5sKxc8pN3MFZTgpBLHUOufKgg55gmmPwNVnnjQ52v_HDPCDjdxnSdP5C3A4wZP873Ifnz_ez36Xl9-fPHxenJZe1EK6eao7bctlbqzg1oBXOy6wTtpUYHVFPNRG8H5-SgbSkH1TOQvBwpsQUAfkg-73Q3Y8xm3kA2TCnF204oXRAXO0QfYWU2ya8h_TMRvLl_iGlpIBWXIxqBsmNYmNxSwRrWUeiFssisG0SZqmh9m7tt7Rp7h6EsZnwm-vwn-CuzjDdGay4440XgyyyQ4t8t5smsfXY4jhAwbndzi0YwKgr0-AX0dXdih3Ip5pxweByGNuYuFQ8sc5cKM6ei0D49NfJIeogB_w8EL7d-</recordid><startdate>20230216</startdate><enddate>20230216</enddate><creator>Füllsack, Manfred</creator><creator>Reisinger, Daniel</creator><creator>Adam, Raven</creator><creator>Kapeller, Marie</creator><creator>Jäger, Georg</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1650-3708</orcidid><orcidid>https://orcid.org/0000-0002-7772-4061</orcidid></search><sort><creationdate>20230216</creationdate><title>Predicting critical transitions in assortative spin-shifting networks</title><author>Füllsack, Manfred ; Reisinger, Daniel ; Adam, Raven ; Kapeller, Marie ; Jäger, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-3e9b3b5b698cfeb42c68841d69eca191924dbfcc6f9b24df7d2a632a666e5aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Equilibrium</topic><topic>Forecasting</topic><topic>Free energy</topic><topic>Influence</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Neighborhoods</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>Seismology</topic><topic>Skewness</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Füllsack, Manfred</creatorcontrib><creatorcontrib>Reisinger, Daniel</creatorcontrib><creatorcontrib>Adam, Raven</creatorcontrib><creatorcontrib>Kapeller, Marie</creatorcontrib><creatorcontrib>Jäger, Georg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Füllsack, Manfred</au><au>Reisinger, Daniel</au><au>Adam, Raven</au><au>Kapeller, Marie</au><au>Jäger, Georg</au><au>Bouffanais, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting critical transitions in assortative spin-shifting networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-02-16</date><risdate>2023</risdate><volume>18</volume><issue>2</issue><spage>e0275183</spage><epage>e0275183</epage><pages>e0275183-e0275183</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Methods to forecast critical transitions, i.e. abrupt changes in systems' equilibrium states have relevance in scientific fields such as ecology, seismology, finance and medicine among others. So far, the bulk of investigations on forecasting methods builds on equation-based modeling methods, which consider system states as aggregates and thus do not account for the different connection strengths in each part of the system. This seems inadequate against the background of studies that insinuate that critical transitions can originate in sparsely connected parts of systems. Here we use agent-based spin-shifting models with assortative network representations to distinguish different interaction densities. Our investigations confirm that signals of imminent critical transitions can indeed be detected significantly earlier in network parts with low link degrees. We discuss the reason for this circumstance on the basis of the free energy principle.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36795743</pmid><doi>10.1371/journal.pone.0275183</doi><orcidid>https://orcid.org/0000-0002-1650-3708</orcidid><orcidid>https://orcid.org/0000-0002-7772-4061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-02, Vol.18 (2), p.e0275183-e0275183
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2777358479
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Biology and Life Sciences
Computer and Information Sciences
Earth Sciences
Ecology
Equilibrium
Forecasting
Free energy
Influence
Mathematical models
Medicine
Neighborhoods
Phase transitions
Physical Sciences
Seismology
Skewness
Social Sciences
title Predicting critical transitions in assortative spin-shifting networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20critical%20transitions%20in%20assortative%20spin-shifting%20networks&rft.jtitle=PloS%20one&rft.au=F%C3%BCllsack,%20Manfred&rft.date=2023-02-16&rft.volume=18&rft.issue=2&rft.spage=e0275183&rft.epage=e0275183&rft.pages=e0275183-e0275183&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0275183&rft_dat=%3Cproquest_plos_%3E2777358479%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-3e9b3b5b698cfeb42c68841d69eca191924dbfcc6f9b24df7d2a632a666e5aaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777358479&rft_id=info:pmid/36795743&rfr_iscdi=true