Loading…
Effect of polymorphism in Rhinolophus affinis ACE2 on entry of SARS-CoV-2 related bat coronaviruses
Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. H...
Saved in:
Published in: | PLoS pathogens 2023-01, Vol.19 (1), p.e1011116 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c661t-a529d16165e4b797d2e0a7c030ca5220765152c888ca6d95cb8e4ee5181569fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c661t-a529d16165e4b797d2e0a7c030ca5220765152c888ca6d95cb8e4ee5181569fb3 |
container_end_page | |
container_issue | 1 |
container_start_page | e1011116 |
container_title | PLoS pathogens |
container_volume | 19 |
creator | Li, Pei Hu, Jiaxin Liu, Yan Ou, Xiuyuan Mu, Zhixia Lu, Xing Zan, Fuwen Cao, Mengmeng Tan, Lin Dong, Siwen Zhou, Yao Lu, Jian Jin, Qi Wang, Jianwei Wu, Zhiqiang Zhang, Yingtao Qian, Zhaohui |
description | Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. Here, we show that, among 18 different bat ACE2s tested, only RaACE2 is highly susceptible to transduction by RaTG13 S pseudovirions, indicating that the bat species harboring RaTG13 might be very limited. RaACE2 has seven polymorphic variants, RA-01 to RA-07, and they show different susceptibilities to RaTG13 S pseudovirions transduction. Sequence and mutagenesis analyses reveal that residues 34, 38, and 83 in RaACE2 might play critical roles in interaction with the RaTG13 S protein. Of note, RaACE2 polymorphisms have minimal effect on S proteins of SARS-CoV-2 and several SARS-CoV-2 related CoVs (SC2r-CoVs) including BANAL-20-52 and BANAL-20-236 in terms of binding, membrane fusion, and pseudovirus entry. Further mutagenesis analyses identify residues 501 and 505 in S proteins critical for the recognition of different RaACE2 variants and pangolin ACE2 (pACE2), indicating that RaTG13 might have not been well adapted to R. affinis bats. While single D501N and H505Y changes in RaTG13 S protein significantly enhance the infectivity and minimize the difference in susceptibility among different RaACE2 variants, an N501D substitution in SARS-CoV-2 S protein displays marked disparity in transduction efficiencies among RaACE2 variants with a significant reduction in infectivity on several RaACE2 variants. Finally, a T372A substitution in RaTG13 S protein not only significantly increases infectivity on all RaACE2 variants, but also markedly enhances entry on several bat ACE2s including R. sinicus YN, R. pearsonii, and R. ferrumeiqunum. However, the T372A mutant is about 4-fold more sensitive to neutralizing sera from mice immunized with BANAL-20-52 S, suggesting that the better immune evasion ability of T372 over A372 might contribute to the natural selective advantage of T372 over A372 among bat CoVs. Together, our study aids a better understanding of coronavirus entry, vaccine design, and evolution. |
doi_str_mv | 10.1371/journal.ppat.1011116 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2777449635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A737316859</galeid><doaj_id>oai_doaj_org_article_38c89c35f3e6410a88c54e44b317fa7e</doaj_id><sourcerecordid>A737316859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-a529d16165e4b797d2e0a7c030ca5220765152c888ca6d95cb8e4ee5181569fb3</originalsourceid><addsrcrecordid>eNqVUk2P0zAQjRCI_YB_gMASpz2k2PFXfEGqqgKVViC1wNVyHLt1lcTBTlb03-Nus6utBAfsg62Z996Mxy_L3iA4Q5ijD3s_hk41s75XwwxBlBZ7ll0iSnHOMSfPn9wvsqsY9xAShBF7mV1gxkpBSnGZ6aW1Rg_AW9D75tD60O9cbIHrwHrnOt_4fjdGoKx1nYtgvlgWwHfAdEM4HEmb-XqTL_zPvADBNGowNajUALQPvlN3LozRxFfZC6uaaF5P53X249Py--JLfvvt82oxv801Y2jIFS1EjRhi1JCKC14XBiquIYY6pQrIGUW00GVZasVqQXVVGmIMRSWiTNgKX2fvTrp946Oc5hNlwTknRDBME2J1QtRe7WUfXKvCQXrl5H3Ah61UYXC6MRKXuhQaU4sNIwiqVJUSQ0iFEbeKm6T1cao2Vq2p9XEkqjkTPc90bie3_k4KAQmhIgm8nwSC_zWaOPyj5Qm1Vakr11mfxHTropbz9LXpP8t7rdlfUGnXpnXad8a6FD8j3JwREmYwv4etGmOUq836P7Bfz7HkhNXBxxiMfRwIgvLo24dHyqNv5eTbRHv7dJiPpAej4j_PXOe-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777449635</pqid></control><display><type>article</type><title>Effect of polymorphism in Rhinolophus affinis ACE2 on entry of SARS-CoV-2 related bat coronaviruses</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Li, Pei ; Hu, Jiaxin ; Liu, Yan ; Ou, Xiuyuan ; Mu, Zhixia ; Lu, Xing ; Zan, Fuwen ; Cao, Mengmeng ; Tan, Lin ; Dong, Siwen ; Zhou, Yao ; Lu, Jian ; Jin, Qi ; Wang, Jianwei ; Wu, Zhiqiang ; Zhang, Yingtao ; Qian, Zhaohui</creator><contributor>Menachery, Vineet D.</contributor><creatorcontrib>Li, Pei ; Hu, Jiaxin ; Liu, Yan ; Ou, Xiuyuan ; Mu, Zhixia ; Lu, Xing ; Zan, Fuwen ; Cao, Mengmeng ; Tan, Lin ; Dong, Siwen ; Zhou, Yao ; Lu, Jian ; Jin, Qi ; Wang, Jianwei ; Wu, Zhiqiang ; Zhang, Yingtao ; Qian, Zhaohui ; Menachery, Vineet D.</creatorcontrib><description>Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. Here, we show that, among 18 different bat ACE2s tested, only RaACE2 is highly susceptible to transduction by RaTG13 S pseudovirions, indicating that the bat species harboring RaTG13 might be very limited. RaACE2 has seven polymorphic variants, RA-01 to RA-07, and they show different susceptibilities to RaTG13 S pseudovirions transduction. Sequence and mutagenesis analyses reveal that residues 34, 38, and 83 in RaACE2 might play critical roles in interaction with the RaTG13 S protein. Of note, RaACE2 polymorphisms have minimal effect on S proteins of SARS-CoV-2 and several SARS-CoV-2 related CoVs (SC2r-CoVs) including BANAL-20-52 and BANAL-20-236 in terms of binding, membrane fusion, and pseudovirus entry. Further mutagenesis analyses identify residues 501 and 505 in S proteins critical for the recognition of different RaACE2 variants and pangolin ACE2 (pACE2), indicating that RaTG13 might have not been well adapted to R. affinis bats. While single D501N and H505Y changes in RaTG13 S protein significantly enhance the infectivity and minimize the difference in susceptibility among different RaACE2 variants, an N501D substitution in SARS-CoV-2 S protein displays marked disparity in transduction efficiencies among RaACE2 variants with a significant reduction in infectivity on several RaACE2 variants. Finally, a T372A substitution in RaTG13 S protein not only significantly increases infectivity on all RaACE2 variants, but also markedly enhances entry on several bat ACE2s including R. sinicus YN, R. pearsonii, and R. ferrumeiqunum. However, the T372A mutant is about 4-fold more sensitive to neutralizing sera from mice immunized with BANAL-20-52 S, suggesting that the better immune evasion ability of T372 over A372 might contribute to the natural selective advantage of T372 over A372 among bat CoVs. Together, our study aids a better understanding of coronavirus entry, vaccine design, and evolution.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1011116</identifier><identifier>PMID: 36689489</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>ACE2 ; Amino acids ; Analysis ; Angiotensin ; Angiotensin-Converting Enzyme 2 ; Animals ; Antibodies ; Bats ; Biology and life sciences ; Chiroptera ; Coronaviruses ; COVID-19 ; Disease susceptibility ; Enzymes ; Experiments ; Genetic aspects ; Genetic polymorphisms ; Humans ; Immunization ; Infection ; Infections ; Infectivity ; Influence ; Medicine and health sciences ; Membrane fusion ; Mice ; Mutagenesis ; Nucleotide sequence ; Nucleotides ; Peptidyl-dipeptidase A ; Plasmids ; Polymorphism ; Proteins ; Research and Analysis Methods ; Residues ; Respiratory diseases ; Rhinolophus affinis ; SARS-CoV-2 - metabolism ; Severe acute respiratory syndrome coronavirus 2 ; Spike Glycoprotein, Coronavirus - metabolism ; Statistical significance ; Substitutes ; Vaccines ; Varieties ; Viral diseases ; Viral infections ; Viruses</subject><ispartof>PLoS pathogens, 2023-01, Vol.19 (1), p.e1011116</ispartof><rights>Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Li et al 2023 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-a529d16165e4b797d2e0a7c030ca5220765152c888ca6d95cb8e4ee5181569fb3</citedby><cites>FETCH-LOGICAL-c661t-a529d16165e4b797d2e0a7c030ca5220765152c888ca6d95cb8e4ee5181569fb3</cites><orcidid>0000-0003-4116-4450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2777449635/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2777449635?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36689489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Menachery, Vineet D.</contributor><creatorcontrib>Li, Pei</creatorcontrib><creatorcontrib>Hu, Jiaxin</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Ou, Xiuyuan</creatorcontrib><creatorcontrib>Mu, Zhixia</creatorcontrib><creatorcontrib>Lu, Xing</creatorcontrib><creatorcontrib>Zan, Fuwen</creatorcontrib><creatorcontrib>Cao, Mengmeng</creatorcontrib><creatorcontrib>Tan, Lin</creatorcontrib><creatorcontrib>Dong, Siwen</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Jin, Qi</creatorcontrib><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Wu, Zhiqiang</creatorcontrib><creatorcontrib>Zhang, Yingtao</creatorcontrib><creatorcontrib>Qian, Zhaohui</creatorcontrib><title>Effect of polymorphism in Rhinolophus affinis ACE2 on entry of SARS-CoV-2 related bat coronaviruses</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. Here, we show that, among 18 different bat ACE2s tested, only RaACE2 is highly susceptible to transduction by RaTG13 S pseudovirions, indicating that the bat species harboring RaTG13 might be very limited. RaACE2 has seven polymorphic variants, RA-01 to RA-07, and they show different susceptibilities to RaTG13 S pseudovirions transduction. Sequence and mutagenesis analyses reveal that residues 34, 38, and 83 in RaACE2 might play critical roles in interaction with the RaTG13 S protein. Of note, RaACE2 polymorphisms have minimal effect on S proteins of SARS-CoV-2 and several SARS-CoV-2 related CoVs (SC2r-CoVs) including BANAL-20-52 and BANAL-20-236 in terms of binding, membrane fusion, and pseudovirus entry. Further mutagenesis analyses identify residues 501 and 505 in S proteins critical for the recognition of different RaACE2 variants and pangolin ACE2 (pACE2), indicating that RaTG13 might have not been well adapted to R. affinis bats. While single D501N and H505Y changes in RaTG13 S protein significantly enhance the infectivity and minimize the difference in susceptibility among different RaACE2 variants, an N501D substitution in SARS-CoV-2 S protein displays marked disparity in transduction efficiencies among RaACE2 variants with a significant reduction in infectivity on several RaACE2 variants. Finally, a T372A substitution in RaTG13 S protein not only significantly increases infectivity on all RaACE2 variants, but also markedly enhances entry on several bat ACE2s including R. sinicus YN, R. pearsonii, and R. ferrumeiqunum. However, the T372A mutant is about 4-fold more sensitive to neutralizing sera from mice immunized with BANAL-20-52 S, suggesting that the better immune evasion ability of T372 over A372 might contribute to the natural selective advantage of T372 over A372 among bat CoVs. Together, our study aids a better understanding of coronavirus entry, vaccine design, and evolution.</description><subject>ACE2</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Angiotensin</subject><subject>Angiotensin-Converting Enzyme 2</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Bats</subject><subject>Biology and life sciences</subject><subject>Chiroptera</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease susceptibility</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Genetic aspects</subject><subject>Genetic polymorphisms</subject><subject>Humans</subject><subject>Immunization</subject><subject>Infection</subject><subject>Infections</subject><subject>Infectivity</subject><subject>Influence</subject><subject>Medicine and health sciences</subject><subject>Membrane fusion</subject><subject>Mice</subject><subject>Mutagenesis</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Peptidyl-dipeptidase A</subject><subject>Plasmids</subject><subject>Polymorphism</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Residues</subject><subject>Respiratory diseases</subject><subject>Rhinolophus affinis</subject><subject>SARS-CoV-2 - metabolism</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><subject>Statistical significance</subject><subject>Substitutes</subject><subject>Vaccines</subject><subject>Varieties</subject><subject>Viral diseases</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk2P0zAQjRCI_YB_gMASpz2k2PFXfEGqqgKVViC1wNVyHLt1lcTBTlb03-Nus6utBAfsg62Z996Mxy_L3iA4Q5ijD3s_hk41s75XwwxBlBZ7ll0iSnHOMSfPn9wvsqsY9xAShBF7mV1gxkpBSnGZ6aW1Rg_AW9D75tD60O9cbIHrwHrnOt_4fjdGoKx1nYtgvlgWwHfAdEM4HEmb-XqTL_zPvADBNGowNajUALQPvlN3LozRxFfZC6uaaF5P53X249Py--JLfvvt82oxv801Y2jIFS1EjRhi1JCKC14XBiquIYY6pQrIGUW00GVZasVqQXVVGmIMRSWiTNgKX2fvTrp946Oc5hNlwTknRDBME2J1QtRe7WUfXKvCQXrl5H3Ah61UYXC6MRKXuhQaU4sNIwiqVJUSQ0iFEbeKm6T1cao2Vq2p9XEkqjkTPc90bie3_k4KAQmhIgm8nwSC_zWaOPyj5Qm1Vakr11mfxHTropbz9LXpP8t7rdlfUGnXpnXad8a6FD8j3JwREmYwv4etGmOUq836P7Bfz7HkhNXBxxiMfRwIgvLo24dHyqNv5eTbRHv7dJiPpAej4j_PXOe-</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Pei</creator><creator>Hu, Jiaxin</creator><creator>Liu, Yan</creator><creator>Ou, Xiuyuan</creator><creator>Mu, Zhixia</creator><creator>Lu, Xing</creator><creator>Zan, Fuwen</creator><creator>Cao, Mengmeng</creator><creator>Tan, Lin</creator><creator>Dong, Siwen</creator><creator>Zhou, Yao</creator><creator>Lu, Jian</creator><creator>Jin, Qi</creator><creator>Wang, Jianwei</creator><creator>Wu, Zhiqiang</creator><creator>Zhang, Yingtao</creator><creator>Qian, Zhaohui</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4116-4450</orcidid></search><sort><creationdate>20230101</creationdate><title>Effect of polymorphism in Rhinolophus affinis ACE2 on entry of SARS-CoV-2 related bat coronaviruses</title><author>Li, Pei ; Hu, Jiaxin ; Liu, Yan ; Ou, Xiuyuan ; Mu, Zhixia ; Lu, Xing ; Zan, Fuwen ; Cao, Mengmeng ; Tan, Lin ; Dong, Siwen ; Zhou, Yao ; Lu, Jian ; Jin, Qi ; Wang, Jianwei ; Wu, Zhiqiang ; Zhang, Yingtao ; Qian, Zhaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-a529d16165e4b797d2e0a7c030ca5220765152c888ca6d95cb8e4ee5181569fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ACE2</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Angiotensin</topic><topic>Angiotensin-Converting Enzyme 2</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Bats</topic><topic>Biology and life sciences</topic><topic>Chiroptera</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease susceptibility</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Genetic aspects</topic><topic>Genetic polymorphisms</topic><topic>Humans</topic><topic>Immunization</topic><topic>Infection</topic><topic>Infections</topic><topic>Infectivity</topic><topic>Influence</topic><topic>Medicine and health sciences</topic><topic>Membrane fusion</topic><topic>Mice</topic><topic>Mutagenesis</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Peptidyl-dipeptidase A</topic><topic>Plasmids</topic><topic>Polymorphism</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Residues</topic><topic>Respiratory diseases</topic><topic>Rhinolophus affinis</topic><topic>SARS-CoV-2 - metabolism</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><topic>Statistical significance</topic><topic>Substitutes</topic><topic>Vaccines</topic><topic>Varieties</topic><topic>Viral diseases</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Pei</creatorcontrib><creatorcontrib>Hu, Jiaxin</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Ou, Xiuyuan</creatorcontrib><creatorcontrib>Mu, Zhixia</creatorcontrib><creatorcontrib>Lu, Xing</creatorcontrib><creatorcontrib>Zan, Fuwen</creatorcontrib><creatorcontrib>Cao, Mengmeng</creatorcontrib><creatorcontrib>Tan, Lin</creatorcontrib><creatorcontrib>Dong, Siwen</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Jin, Qi</creatorcontrib><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Wu, Zhiqiang</creatorcontrib><creatorcontrib>Zhang, Yingtao</creatorcontrib><creatorcontrib>Qian, Zhaohui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Pei</au><au>Hu, Jiaxin</au><au>Liu, Yan</au><au>Ou, Xiuyuan</au><au>Mu, Zhixia</au><au>Lu, Xing</au><au>Zan, Fuwen</au><au>Cao, Mengmeng</au><au>Tan, Lin</au><au>Dong, Siwen</au><au>Zhou, Yao</au><au>Lu, Jian</au><au>Jin, Qi</au><au>Wang, Jianwei</au><au>Wu, Zhiqiang</au><au>Zhang, Yingtao</au><au>Qian, Zhaohui</au><au>Menachery, Vineet D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of polymorphism in Rhinolophus affinis ACE2 on entry of SARS-CoV-2 related bat coronaviruses</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>e1011116</spage><pages>e1011116-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Bat coronavirus RaTG13 shares about 96.2% nucleotide sequence identity with that of SARS-CoV-2 and uses human and Rhinolophus affinis (Ra) angiotensin-converting enzyme 2 (ACE2) as entry receptors. Whether there are bat species other than R. affinis susceptible to RaTG13 infection remains elusive. Here, we show that, among 18 different bat ACE2s tested, only RaACE2 is highly susceptible to transduction by RaTG13 S pseudovirions, indicating that the bat species harboring RaTG13 might be very limited. RaACE2 has seven polymorphic variants, RA-01 to RA-07, and they show different susceptibilities to RaTG13 S pseudovirions transduction. Sequence and mutagenesis analyses reveal that residues 34, 38, and 83 in RaACE2 might play critical roles in interaction with the RaTG13 S protein. Of note, RaACE2 polymorphisms have minimal effect on S proteins of SARS-CoV-2 and several SARS-CoV-2 related CoVs (SC2r-CoVs) including BANAL-20-52 and BANAL-20-236 in terms of binding, membrane fusion, and pseudovirus entry. Further mutagenesis analyses identify residues 501 and 505 in S proteins critical for the recognition of different RaACE2 variants and pangolin ACE2 (pACE2), indicating that RaTG13 might have not been well adapted to R. affinis bats. While single D501N and H505Y changes in RaTG13 S protein significantly enhance the infectivity and minimize the difference in susceptibility among different RaACE2 variants, an N501D substitution in SARS-CoV-2 S protein displays marked disparity in transduction efficiencies among RaACE2 variants with a significant reduction in infectivity on several RaACE2 variants. Finally, a T372A substitution in RaTG13 S protein not only significantly increases infectivity on all RaACE2 variants, but also markedly enhances entry on several bat ACE2s including R. sinicus YN, R. pearsonii, and R. ferrumeiqunum. However, the T372A mutant is about 4-fold more sensitive to neutralizing sera from mice immunized with BANAL-20-52 S, suggesting that the better immune evasion ability of T372 over A372 might contribute to the natural selective advantage of T372 over A372 among bat CoVs. Together, our study aids a better understanding of coronavirus entry, vaccine design, and evolution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>36689489</pmid><doi>10.1371/journal.ppat.1011116</doi><tpages>e1011116</tpages><orcidid>https://orcid.org/0000-0003-4116-4450</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2023-01, Vol.19 (1), p.e1011116 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2777449635 |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | ACE2 Amino acids Analysis Angiotensin Angiotensin-Converting Enzyme 2 Animals Antibodies Bats Biology and life sciences Chiroptera Coronaviruses COVID-19 Disease susceptibility Enzymes Experiments Genetic aspects Genetic polymorphisms Humans Immunization Infection Infections Infectivity Influence Medicine and health sciences Membrane fusion Mice Mutagenesis Nucleotide sequence Nucleotides Peptidyl-dipeptidase A Plasmids Polymorphism Proteins Research and Analysis Methods Residues Respiratory diseases Rhinolophus affinis SARS-CoV-2 - metabolism Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - metabolism Statistical significance Substitutes Vaccines Varieties Viral diseases Viral infections Viruses |
title | Effect of polymorphism in Rhinolophus affinis ACE2 on entry of SARS-CoV-2 related bat coronaviruses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20polymorphism%20in%20Rhinolophus%20affinis%20ACE2%20on%20entry%20of%20SARS-CoV-2%20related%20bat%20coronaviruses&rft.jtitle=PLoS%20pathogens&rft.au=Li,%20Pei&rft.date=2023-01-01&rft.volume=19&rft.issue=1&rft.spage=e1011116&rft.pages=e1011116-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1011116&rft_dat=%3Cgale_plos_%3EA737316859%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c661t-a529d16165e4b797d2e0a7c030ca5220765152c888ca6d95cb8e4ee5181569fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777449635&rft_id=info:pmid/36689489&rft_galeid=A737316859&rfr_iscdi=true |