Loading…
Autophagic flux is impaired in the brain tissue of Tay-Sachs disease mouse model
Tay-Sachs disease is a lethal lysosomal storage disorder caused by mutations in the HexA gene encoding the α subunit of the lysosomal β-hexosaminidase enzyme (HEXA). Abnormal GM2 ganglioside accumulation causes progressive deterioration in the central nervous system in Tay-Sachs patients. Hexa-/- mo...
Saved in:
Published in: | PloS one 2023-03, Vol.18 (3), p.e0280650-e0280650 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tay-Sachs disease is a lethal lysosomal storage disorder caused by mutations in the HexA gene encoding the α subunit of the lysosomal β-hexosaminidase enzyme (HEXA). Abnormal GM2 ganglioside accumulation causes progressive deterioration in the central nervous system in Tay-Sachs patients. Hexa-/- mouse model failed to display abnormal phenotype. Recently, our group generated Hexa-/-Neu3-/- mouse showed severe neuropathological indications similar to Tay-Sachs patients. Despite excessive GM2 ganglioside accumulation in the brain and visceral organs, the regulation of autophagy has not been clarified yet in the Tay-Sachs disease mouse model. Therefore, we investigated distinct steps of autophagic flux using markers including LC3 and p62 in four different brain regions from the Hexa-/-Neu3-/- mice model of Tay-Sachs disease. Our data revealed accumulated autophagosomes and autophagolysosomes indicating impairment in autophagic flux in the brain. We suggest that autophagy might be a new therapeutic target for the treatment of devastating Tay-Sachs disease. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0280650 |