Loading…

The oldest known bat skeletons and their implications for Eocene chiropteran diversification

The Fossil Lake deposits of the Green River Formation of Wyoming, a remarkable early Eocene Lagerstätte (51.98 ±0.35 Ma), have produced nearly 30 bat fossils over the last 50 years. However, diversity has thus far been limited to only two bat species. Here, we describe a new species of Icaronycteris...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-04, Vol.18 (4), p.e0283505-e0283505
Main Authors: Rietbergen, Tim B, van den Hoek Ostende, Lars W, Aase, Arvid, Jones, Matthew F, Medeiros, Edward D, Simmons, Nancy B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Fossil Lake deposits of the Green River Formation of Wyoming, a remarkable early Eocene Lagerstätte (51.98 ±0.35 Ma), have produced nearly 30 bat fossils over the last 50 years. However, diversity has thus far been limited to only two bat species. Here, we describe a new species of Icaronycteris based on two articulated skeletons discovered in the American Fossil Quarry northwest of Kemmerer, Wyoming. The relative stratigraphic position of these fossils indicates that they are the oldest bat skeletons recovered to date anywhere in the world. Phylogenetic analysis of Eocene fossil bats and living taxa places the new species within the family Icaronycteridae as sister to Icaronycteris index, and additionally indicates that the two Green River archaic bat families (Icaronycteridae and Onychonycteridae) form a clade distinct from known Old World lineages of archaic bats. Our analyses found no evidence that Icaronycteris? menui (France) nor I. sigei (India) belong to this clade; accordingly, we therefore remove them from Icaronycteridae. Taken in sum, our results indicate that Green River bats represent a separate chiropteran radiation of basal bats, and provide additional support for the hypothesis of a rapid radiation of bats on multiple continents during the early Eocene.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0283505