Loading…
Supervised breast cancer prediction using integrated dimensionality reduction convolutional neural network
Breast cancer is a major health problem with high mortality rates. Early detection of breast cancer will promote treatment. A technology that determines whether a tumor is benign desirable. This article introduces a new method in which deep learning is used to classify breast cancer. A new computer-...
Saved in:
Published in: | PloS one 2023-05, Vol.18 (5), p.e0282350-e0282350 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Breast cancer is a major health problem with high mortality rates. Early detection of breast cancer will promote treatment. A technology that determines whether a tumor is benign desirable. This article introduces a new method in which deep learning is used to classify breast cancer.
A new computer-aided detection (CAD) system is presented to classify benign and malignant masses in breast tumor cell samples. In the CAD system, (1) for the pathological data of unbalanced tumors, the training results are biased towards the side with the larger number of samples. This paper uses a Conditional Deep Convolution Generative Adversarial Network (CDCGAN) method to generate small samples by orientation data set to solve the imbalance problem of collected data. (2) For the high-dimensional data redundancy problem, this paper proposes an integrated dimension reduction convolutional neural network (IDRCNN) model, which solves the high-dimensional data dimension reduction problem of breast cancer and extracts effective features. The subsequent classifier found that by using the IDRCNN model proposed in this paper, the accuracy of the model was improved.
Experimental results show that IDRCNN combined with the model of CDCGAN model has superior classification performance than existing methods, as revealed by sensitivity, area under the curve (AUC), ROC curve and accuracy, recall, sensitivity, specificity, precision,PPV,NPV and f-values analysis.
This paper proposes a Conditional Deep Convolution Generative Adversarial Network (CDCGAN) which can solve the imbalance problem of manually collected data by directionally generating small sample data sets. And an integrated dimension reduction convolutional neural network (IDRCNN) model, which solves the high-dimensional data dimension reduction problem of breast cancer and extracts effective features. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0282350 |