Loading…

iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria

The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host as...

Full description

Saved in:
Bibliographic Details
Published in:PLoS biology 2023-04, Vol.21 (4), p.e3002083-e3002083
Main Authors: Roux, Simon, Camargo, Antonio Pedro, Coutinho, Felipe H, Dabdoub, Shareef M, Dutilh, Bas E, Nayfach, Stephen, Tritt, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03
cites cdi_FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03
container_end_page e3002083
container_issue 4
container_start_page e3002083
container_title PLoS biology
container_volume 21
creator Roux, Simon
Camargo, Antonio Pedro
Coutinho, Felipe H
Dabdoub, Shareef M
Dutilh, Bas E
Nayfach, Stephen
Tritt, Andrew
description The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.
doi_str_mv 10.1371/journal.pbio.3002083
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2814430395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749467327</galeid><doaj_id>oai_doaj_org_article_24ba197aa8c4423985995c843c6de95c</doaj_id><sourcerecordid>A749467327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03</originalsourceid><addsrcrecordid>eNqVk0tv1DAQxyMEoqXwDRBYcIHDLn5ukl5QVQGtVNGK19WaOJOsS2IvtrcUjnxyvOy26qIeQJZsy_Ob_zysKYrHjE6ZKNmrc78MDobporF-KijltBJ3il2mpJqUVaXu3rjvFA9iPM8Mr3l1v9gRZYZLoXaLX_bsyJ_tkwNHrEvYB0jYkhHM3DokA0Jw1vWkCzDidx--kuSz9dKO9ieSuY-JLAK21iTrHel8ICMm6NH5ESctBnuR1S5sWEaMxHcEgpkDAgHXkgZMygQ8LO51MER8tDn3is9v33w6PJqcnL47Pjw4mZiSi5R3pLJlQraSU5wBQ0PLpqtKJXgzQ9XMSglSsa5ihlVdU6pWKJSCY8OhbajYK56udReDj3rTvqh5xaQUVNQqE8drovVwrhfBjhB-aA9W_3nwodcQkjUDai4bYHUJUBkpuagrVdfKVFKYWYv5lrVeb6ItmxFbgy4FGLZEty3OznXvLzSjTGWxOis8WyvkLlsdjU1o5sY7hybpHJuxapXyi02Y4L8tMSY92mhwGMChX66qo4oKJhjP6PO_0Nt7sKF6yGVa1_mcnVmJ6oNS1nJWCl5manoLlVeLo805Ymfz-5bDyy2HzCS8TD0sY9THHz_8B_v-39nTL9usXLMm-BgDdte_wahezdRVQ_RqpvRmprLbk5s_ee10NUTiN0LtHG8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814430395</pqid></control><display><type>article</type><title>iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Roux, Simon ; Camargo, Antonio Pedro ; Coutinho, Felipe H ; Dabdoub, Shareef M ; Dutilh, Bas E ; Nayfach, Stephen ; Tritt, Andrew</creator><contributor>Arumugam, Manimozhiyan</contributor><creatorcontrib>Roux, Simon ; Camargo, Antonio Pedro ; Coutinho, Felipe H ; Dabdoub, Shareef M ; Dutilh, Bas E ; Nayfach, Stephen ; Tritt, Andrew ; Arumugam, Manimozhiyan</creatorcontrib><description>The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3002083</identifier><identifier>PMID: 37083735</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Archaea ; Archaea - genetics ; Bacteria ; Bacteria - genetics ; Bacteriophages ; Benchmarks ; Biology and Life Sciences ; Computer and Information Sciences ; CRISPR ; Datasets ; Ecology and Environmental Sciences ; Engineering and Technology ; Gene sequencing ; Genome, Viral - genetics ; Genomes ; Identification and classification ; Machine Learning ; Metabolism ; Metagenome - genetics ; Metagenomics ; Metagenomics - methods ; Methods ; Methods and Resources ; Predictions ; Research and Analysis Methods ; Taxonomy ; Viral infections ; Virulence ; Viruses ; Viruses - genetics</subject><ispartof>PLoS biology, 2023-04, Vol.21 (4), p.e3002083-e3002083</ispartof><rights>Copyright: © 2023 Roux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Roux et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Roux et al 2023 Roux et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03</citedby><cites>FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03</cites><orcidid>0000-0002-5831-5895 ; 0000000258315895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2814430395/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2814430395?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37083735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1971185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Arumugam, Manimozhiyan</contributor><creatorcontrib>Roux, Simon</creatorcontrib><creatorcontrib>Camargo, Antonio Pedro</creatorcontrib><creatorcontrib>Coutinho, Felipe H</creatorcontrib><creatorcontrib>Dabdoub, Shareef M</creatorcontrib><creatorcontrib>Dutilh, Bas E</creatorcontrib><creatorcontrib>Nayfach, Stephen</creatorcontrib><creatorcontrib>Tritt, Andrew</creatorcontrib><title>iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.</description><subject>Analysis</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteriophages</subject><subject>Benchmarks</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>CRISPR</subject><subject>Datasets</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Gene sequencing</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Identification and classification</subject><subject>Machine Learning</subject><subject>Metabolism</subject><subject>Metagenome - genetics</subject><subject>Metagenomics</subject><subject>Metagenomics - methods</subject><subject>Methods</subject><subject>Methods and Resources</subject><subject>Predictions</subject><subject>Research and Analysis Methods</subject><subject>Taxonomy</subject><subject>Viral infections</subject><subject>Virulence</subject><subject>Viruses</subject><subject>Viruses - genetics</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk0tv1DAQxyMEoqXwDRBYcIHDLn5ukl5QVQGtVNGK19WaOJOsS2IvtrcUjnxyvOy26qIeQJZsy_Ob_zysKYrHjE6ZKNmrc78MDobporF-KijltBJ3il2mpJqUVaXu3rjvFA9iPM8Mr3l1v9gRZYZLoXaLX_bsyJ_tkwNHrEvYB0jYkhHM3DokA0Jw1vWkCzDidx--kuSz9dKO9ieSuY-JLAK21iTrHel8ICMm6NH5ESctBnuR1S5sWEaMxHcEgpkDAgHXkgZMygQ8LO51MER8tDn3is9v33w6PJqcnL47Pjw4mZiSi5R3pLJlQraSU5wBQ0PLpqtKJXgzQ9XMSglSsa5ihlVdU6pWKJSCY8OhbajYK56udReDj3rTvqh5xaQUVNQqE8drovVwrhfBjhB-aA9W_3nwodcQkjUDai4bYHUJUBkpuagrVdfKVFKYWYv5lrVeb6ItmxFbgy4FGLZEty3OznXvLzSjTGWxOis8WyvkLlsdjU1o5sY7hybpHJuxapXyi02Y4L8tMSY92mhwGMChX66qo4oKJhjP6PO_0Nt7sKF6yGVa1_mcnVmJ6oNS1nJWCl5manoLlVeLo805Ymfz-5bDyy2HzCS8TD0sY9THHz_8B_v-39nTL9usXLMm-BgDdte_wahezdRVQ_RqpvRmprLbk5s_ee10NUTiN0LtHG8</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Roux, Simon</creator><creator>Camargo, Antonio Pedro</creator><creator>Coutinho, Felipe H</creator><creator>Dabdoub, Shareef M</creator><creator>Dutilh, Bas E</creator><creator>Nayfach, Stephen</creator><creator>Tritt, Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-5831-5895</orcidid><orcidid>https://orcid.org/0000000258315895</orcidid></search><sort><creationdate>20230421</creationdate><title>iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria</title><author>Roux, Simon ; Camargo, Antonio Pedro ; Coutinho, Felipe H ; Dabdoub, Shareef M ; Dutilh, Bas E ; Nayfach, Stephen ; Tritt, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteriophages</topic><topic>Benchmarks</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>CRISPR</topic><topic>Datasets</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Gene sequencing</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Identification and classification</topic><topic>Machine Learning</topic><topic>Metabolism</topic><topic>Metagenome - genetics</topic><topic>Metagenomics</topic><topic>Metagenomics - methods</topic><topic>Methods</topic><topic>Methods and Resources</topic><topic>Predictions</topic><topic>Research and Analysis Methods</topic><topic>Taxonomy</topic><topic>Viral infections</topic><topic>Virulence</topic><topic>Viruses</topic><topic>Viruses - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roux, Simon</creatorcontrib><creatorcontrib>Camargo, Antonio Pedro</creatorcontrib><creatorcontrib>Coutinho, Felipe H</creatorcontrib><creatorcontrib>Dabdoub, Shareef M</creatorcontrib><creatorcontrib>Dutilh, Bas E</creatorcontrib><creatorcontrib>Nayfach, Stephen</creatorcontrib><creatorcontrib>Tritt, Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roux, Simon</au><au>Camargo, Antonio Pedro</au><au>Coutinho, Felipe H</au><au>Dabdoub, Shareef M</au><au>Dutilh, Bas E</au><au>Nayfach, Stephen</au><au>Tritt, Andrew</au><au>Arumugam, Manimozhiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2023-04-21</date><risdate>2023</risdate><volume>21</volume><issue>4</issue><spage>e3002083</spage><epage>e3002083</epage><pages>e3002083-e3002083</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37083735</pmid><doi>10.1371/journal.pbio.3002083</doi><orcidid>https://orcid.org/0000-0002-5831-5895</orcidid><orcidid>https://orcid.org/0000000258315895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2023-04, Vol.21 (4), p.e3002083-e3002083
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2814430395
source Publicly Available Content Database; PubMed Central
subjects Analysis
Archaea
Archaea - genetics
Bacteria
Bacteria - genetics
Bacteriophages
Benchmarks
Biology and Life Sciences
Computer and Information Sciences
CRISPR
Datasets
Ecology and Environmental Sciences
Engineering and Technology
Gene sequencing
Genome, Viral - genetics
Genomes
Identification and classification
Machine Learning
Metabolism
Metagenome - genetics
Metagenomics
Metagenomics - methods
Methods
Methods and Resources
Predictions
Research and Analysis Methods
Taxonomy
Viral infections
Virulence
Viruses
Viruses - genetics
title iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iPHoP:%20An%20integrated%20machine%20learning%20framework%20to%20maximize%20host%20prediction%20for%20metagenome-derived%20viruses%20of%20archaea%20and%20bacteria&rft.jtitle=PLoS%20biology&rft.au=Roux,%20Simon&rft.date=2023-04-21&rft.volume=21&rft.issue=4&rft.spage=e3002083&rft.epage=e3002083&rft.pages=e3002083-e3002083&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3002083&rft_dat=%3Cgale_plos_%3EA749467327%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c723t-c7e04d134d420e6a1ec07bf87532b6e5b674a451f81c18fb75d35e432eb2adb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814430395&rft_id=info:pmid/37083735&rft_galeid=A749467327&rfr_iscdi=true