Loading…

Screening of adolescent idiopathic scoliosis using generative adversarial network (GAN) inversion method in chest radiographs

Conventional computer-aided diagnosis using convolutional neural networks (CNN) has limitations in detecting sensitive changes and determining accurate decision boundaries in spectral and structural diseases such as scoliosis. We devised a new method to detect and diagnose adolescent idiopathic scol...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-05, Vol.18 (5), p.e0285489-e0285489
Main Authors: Lee, Jun Soo, Shin, Keewon, Ryu, Seung Min, Jegal, Seong Gyu, Lee, Woojin, Yoon, Min A, Hong, Gil-Sun, Paik, Sanghyun, Kim, Namkug
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-3ef56b0f5e6b033cb6ae74837ac652e48e434f9455ff0835b31588d4f25c68c33
cites cdi_FETCH-LOGICAL-c594t-3ef56b0f5e6b033cb6ae74837ac652e48e434f9455ff0835b31588d4f25c68c33
container_end_page e0285489
container_issue 5
container_start_page e0285489
container_title PloS one
container_volume 18
creator Lee, Jun Soo
Shin, Keewon
Ryu, Seung Min
Jegal, Seong Gyu
Lee, Woojin
Yoon, Min A
Hong, Gil-Sun
Paik, Sanghyun
Kim, Namkug
description Conventional computer-aided diagnosis using convolutional neural networks (CNN) has limitations in detecting sensitive changes and determining accurate decision boundaries in spectral and structural diseases such as scoliosis. We devised a new method to detect and diagnose adolescent idiopathic scoliosis in chest X-rays (CXRs) employing the latent space's discriminative ability in the generative adversarial network (GAN) and a simple multi-layer perceptron (MLP) to screen adolescent idiopathic scoliosis CXRs. Our model was trained and validated in a two-step manner. First, we trained a GAN using CXRs with various scoliosis severities and utilized the trained network as a feature extractor using the GAN inversion method. Second, we classified each vector from the latent space using a simple MLP. The 2-layer MLP exhibited the best classification in the ablation study. With this model, the area under the receiver operating characteristic (AUROC) curves were 0.850 in the internal and 0.847 in the external datasets. Furthermore, when the sensitivity was fixed at 0.9, the model's specificity was 0.697 in the internal and 0.646 in the external datasets. We developed a classifier for Adolescent idiopathic scoliosis (AIS) through generative representation learning. Our model shows good AUROC under screening chest radiographs in both the internal and external datasets. Our model has learned the spectral severity of AIS, enabling it to generate normal images even when trained solely on scoliosis radiographs.
doi_str_mv 10.1371/journal.pone.0285489
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2817448584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750203615</galeid><doaj_id>oai_doaj_org_article_6b6c41cf3bb541159468a663419d6ee9</doaj_id><sourcerecordid>A750203615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-3ef56b0f5e6b033cb6ae74837ac652e48e434f9455ff0835b31588d4f25c68c33</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsIfILDEpixmiJ9xVtWoglKpggWwthznOuMhYw92MogF_47TSasOqizZ1vU55z58iuI1LpeYVvjDJozR6365Cx6WJZGcyfpJcYprShaClPTpg_tJ8SKlTVlyKoV4XpzQimBBJTkt_n4zEcA736FgkW5DD8mAH5BrXdjpYe0MSib0LiSX0JgmYAceoh7cHjJhDzHp6HSPPAy_Q_yJzq9WX94j56cXFzzawrAObQ4gs4Y0oKizdBf1bp1eFs-s7hO8ms-z4senj98vPy9uvl5dX65uFobXbFhQsFw0peWQd0pNIzRUTNJKG8EJMAmMMlszzq0tJeUNxVzKllnCjZCG0rPi7UF314ek5sklRSSuGJNcsoy4PiDaoDdqF91Wxz8qaKduAyF2SsfBmR6UaIRh2FjaNJxhnCsUUgtBGa5bAVBnrYs529hsoZ3GGXV_JHr84t1adWGvcElKQsRU7_msEMOvMQ9NbV3-lr7XHsJ4W7gsORNUZOi7_6CPtzejOp07cN6GnNhMompV8ZyWCswzavkIKq8Wts5kn1mX40cEdiCYGFKKYO-bxKWaXHpXjJpcqmaXZtqbhwO6J93Zkv4DZWrlqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817448584</pqid></control><display><type>article</type><title>Screening of adolescent idiopathic scoliosis using generative adversarial network (GAN) inversion method in chest radiographs</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Lee, Jun Soo ; Shin, Keewon ; Ryu, Seung Min ; Jegal, Seong Gyu ; Lee, Woojin ; Yoon, Min A ; Hong, Gil-Sun ; Paik, Sanghyun ; Kim, Namkug</creator><contributor>Ijaz, Muhammad Fazal</contributor><creatorcontrib>Lee, Jun Soo ; Shin, Keewon ; Ryu, Seung Min ; Jegal, Seong Gyu ; Lee, Woojin ; Yoon, Min A ; Hong, Gil-Sun ; Paik, Sanghyun ; Kim, Namkug ; Ijaz, Muhammad Fazal</creatorcontrib><description>Conventional computer-aided diagnosis using convolutional neural networks (CNN) has limitations in detecting sensitive changes and determining accurate decision boundaries in spectral and structural diseases such as scoliosis. We devised a new method to detect and diagnose adolescent idiopathic scoliosis in chest X-rays (CXRs) employing the latent space's discriminative ability in the generative adversarial network (GAN) and a simple multi-layer perceptron (MLP) to screen adolescent idiopathic scoliosis CXRs. Our model was trained and validated in a two-step manner. First, we trained a GAN using CXRs with various scoliosis severities and utilized the trained network as a feature extractor using the GAN inversion method. Second, we classified each vector from the latent space using a simple MLP. The 2-layer MLP exhibited the best classification in the ablation study. With this model, the area under the receiver operating characteristic (AUROC) curves were 0.850 in the internal and 0.847 in the external datasets. Furthermore, when the sensitivity was fixed at 0.9, the model's specificity was 0.697 in the internal and 0.646 in the external datasets. We developed a classifier for Adolescent idiopathic scoliosis (AIS) through generative representation learning. Our model shows good AUROC under screening chest radiographs in both the internal and external datasets. Our model has learned the spectral severity of AIS, enabling it to generate normal images even when trained solely on scoliosis radiographs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0285489</identifier><identifier>PMID: 37216382</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Adolescent ; Adolescents ; Algorithms ; Artificial neural networks ; Automation ; Biology and Life Sciences ; Chest ; Computer and Information Sciences ; Datasets ; Deep learning ; Diagnosis ; Diagnosis, Computer-Assisted - methods ; Generative adversarial networks ; Health aspects ; Humans ; Inversion ; Kyphosis ; Machine learning ; Medicine and Health Sciences ; Methods ; Modelling ; Multilayer perceptrons ; Multilayers ; Neural networks ; Neural Networks, Computer ; Physical Sciences ; Physiological aspects ; Radiographs ; Radiography ; Research and Analysis Methods ; Scoliosis ; Scoliosis - diagnostic imaging ; Screening ; Social Sciences ; Teenagers ; Young adults ; Youth</subject><ispartof>PloS one, 2023-05, Vol.18 (5), p.e0285489-e0285489</ispartof><rights>Copyright: © 2023 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Lee et al 2023 Lee et al</rights><rights>2023 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-3ef56b0f5e6b033cb6ae74837ac652e48e434f9455ff0835b31588d4f25c68c33</citedby><cites>FETCH-LOGICAL-c594t-3ef56b0f5e6b033cb6ae74837ac652e48e434f9455ff0835b31588d4f25c68c33</cites><orcidid>0000-0001-5185-8531 ; 0009-0005-1054-6175 ; 0000-0002-3438-2217 ; 0000-0002-5028-5716 ; 0000-0001-6946-1428 ; 0000-0003-0886-6119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2817448584/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2817448584?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37216382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ijaz, Muhammad Fazal</contributor><creatorcontrib>Lee, Jun Soo</creatorcontrib><creatorcontrib>Shin, Keewon</creatorcontrib><creatorcontrib>Ryu, Seung Min</creatorcontrib><creatorcontrib>Jegal, Seong Gyu</creatorcontrib><creatorcontrib>Lee, Woojin</creatorcontrib><creatorcontrib>Yoon, Min A</creatorcontrib><creatorcontrib>Hong, Gil-Sun</creatorcontrib><creatorcontrib>Paik, Sanghyun</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><title>Screening of adolescent idiopathic scoliosis using generative adversarial network (GAN) inversion method in chest radiographs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Conventional computer-aided diagnosis using convolutional neural networks (CNN) has limitations in detecting sensitive changes and determining accurate decision boundaries in spectral and structural diseases such as scoliosis. We devised a new method to detect and diagnose adolescent idiopathic scoliosis in chest X-rays (CXRs) employing the latent space's discriminative ability in the generative adversarial network (GAN) and a simple multi-layer perceptron (MLP) to screen adolescent idiopathic scoliosis CXRs. Our model was trained and validated in a two-step manner. First, we trained a GAN using CXRs with various scoliosis severities and utilized the trained network as a feature extractor using the GAN inversion method. Second, we classified each vector from the latent space using a simple MLP. The 2-layer MLP exhibited the best classification in the ablation study. With this model, the area under the receiver operating characteristic (AUROC) curves were 0.850 in the internal and 0.847 in the external datasets. Furthermore, when the sensitivity was fixed at 0.9, the model's specificity was 0.697 in the internal and 0.646 in the external datasets. We developed a classifier for Adolescent idiopathic scoliosis (AIS) through generative representation learning. Our model shows good AUROC under screening chest radiographs in both the internal and external datasets. Our model has learned the spectral severity of AIS, enabling it to generate normal images even when trained solely on scoliosis radiographs.</description><subject>Ablation</subject><subject>Adolescent</subject><subject>Adolescents</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Chest</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Generative adversarial networks</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Inversion</subject><subject>Kyphosis</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Modelling</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Radiographs</subject><subject>Radiography</subject><subject>Research and Analysis Methods</subject><subject>Scoliosis</subject><subject>Scoliosis - diagnostic imaging</subject><subject>Screening</subject><subject>Social Sciences</subject><subject>Teenagers</subject><subject>Young adults</subject><subject>Youth</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsIfILDEpixmiJ9xVtWoglKpggWwthznOuMhYw92MogF_47TSasOqizZ1vU55z58iuI1LpeYVvjDJozR6365Cx6WJZGcyfpJcYprShaClPTpg_tJ8SKlTVlyKoV4XpzQimBBJTkt_n4zEcA736FgkW5DD8mAH5BrXdjpYe0MSib0LiSX0JgmYAceoh7cHjJhDzHp6HSPPAy_Q_yJzq9WX94j56cXFzzawrAObQ4gs4Y0oKizdBf1bp1eFs-s7hO8ms-z4senj98vPy9uvl5dX65uFobXbFhQsFw0peWQd0pNIzRUTNJKG8EJMAmMMlszzq0tJeUNxVzKllnCjZCG0rPi7UF314ek5sklRSSuGJNcsoy4PiDaoDdqF91Wxz8qaKduAyF2SsfBmR6UaIRh2FjaNJxhnCsUUgtBGa5bAVBnrYs529hsoZ3GGXV_JHr84t1adWGvcElKQsRU7_msEMOvMQ9NbV3-lr7XHsJ4W7gsORNUZOi7_6CPtzejOp07cN6GnNhMompV8ZyWCswzavkIKq8Wts5kn1mX40cEdiCYGFKKYO-bxKWaXHpXjJpcqmaXZtqbhwO6J93Zkv4DZWrlqA</recordid><startdate>20230522</startdate><enddate>20230522</enddate><creator>Lee, Jun Soo</creator><creator>Shin, Keewon</creator><creator>Ryu, Seung Min</creator><creator>Jegal, Seong Gyu</creator><creator>Lee, Woojin</creator><creator>Yoon, Min A</creator><creator>Hong, Gil-Sun</creator><creator>Paik, Sanghyun</creator><creator>Kim, Namkug</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5185-8531</orcidid><orcidid>https://orcid.org/0009-0005-1054-6175</orcidid><orcidid>https://orcid.org/0000-0002-3438-2217</orcidid><orcidid>https://orcid.org/0000-0002-5028-5716</orcidid><orcidid>https://orcid.org/0000-0001-6946-1428</orcidid><orcidid>https://orcid.org/0000-0003-0886-6119</orcidid></search><sort><creationdate>20230522</creationdate><title>Screening of adolescent idiopathic scoliosis using generative adversarial network (GAN) inversion method in chest radiographs</title><author>Lee, Jun Soo ; Shin, Keewon ; Ryu, Seung Min ; Jegal, Seong Gyu ; Lee, Woojin ; Yoon, Min A ; Hong, Gil-Sun ; Paik, Sanghyun ; Kim, Namkug</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-3ef56b0f5e6b033cb6ae74837ac652e48e434f9455ff0835b31588d4f25c68c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Adolescent</topic><topic>Adolescents</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Chest</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Generative adversarial networks</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Inversion</topic><topic>Kyphosis</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Modelling</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Radiographs</topic><topic>Radiography</topic><topic>Research and Analysis Methods</topic><topic>Scoliosis</topic><topic>Scoliosis - diagnostic imaging</topic><topic>Screening</topic><topic>Social Sciences</topic><topic>Teenagers</topic><topic>Young adults</topic><topic>Youth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jun Soo</creatorcontrib><creatorcontrib>Shin, Keewon</creatorcontrib><creatorcontrib>Ryu, Seung Min</creatorcontrib><creatorcontrib>Jegal, Seong Gyu</creatorcontrib><creatorcontrib>Lee, Woojin</creatorcontrib><creatorcontrib>Yoon, Min A</creatorcontrib><creatorcontrib>Hong, Gil-Sun</creatorcontrib><creatorcontrib>Paik, Sanghyun</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jun Soo</au><au>Shin, Keewon</au><au>Ryu, Seung Min</au><au>Jegal, Seong Gyu</au><au>Lee, Woojin</au><au>Yoon, Min A</au><au>Hong, Gil-Sun</au><au>Paik, Sanghyun</au><au>Kim, Namkug</au><au>Ijaz, Muhammad Fazal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening of adolescent idiopathic scoliosis using generative adversarial network (GAN) inversion method in chest radiographs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-05-22</date><risdate>2023</risdate><volume>18</volume><issue>5</issue><spage>e0285489</spage><epage>e0285489</epage><pages>e0285489-e0285489</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Conventional computer-aided diagnosis using convolutional neural networks (CNN) has limitations in detecting sensitive changes and determining accurate decision boundaries in spectral and structural diseases such as scoliosis. We devised a new method to detect and diagnose adolescent idiopathic scoliosis in chest X-rays (CXRs) employing the latent space's discriminative ability in the generative adversarial network (GAN) and a simple multi-layer perceptron (MLP) to screen adolescent idiopathic scoliosis CXRs. Our model was trained and validated in a two-step manner. First, we trained a GAN using CXRs with various scoliosis severities and utilized the trained network as a feature extractor using the GAN inversion method. Second, we classified each vector from the latent space using a simple MLP. The 2-layer MLP exhibited the best classification in the ablation study. With this model, the area under the receiver operating characteristic (AUROC) curves were 0.850 in the internal and 0.847 in the external datasets. Furthermore, when the sensitivity was fixed at 0.9, the model's specificity was 0.697 in the internal and 0.646 in the external datasets. We developed a classifier for Adolescent idiopathic scoliosis (AIS) through generative representation learning. Our model shows good AUROC under screening chest radiographs in both the internal and external datasets. Our model has learned the spectral severity of AIS, enabling it to generate normal images even when trained solely on scoliosis radiographs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37216382</pmid><doi>10.1371/journal.pone.0285489</doi><orcidid>https://orcid.org/0000-0001-5185-8531</orcidid><orcidid>https://orcid.org/0009-0005-1054-6175</orcidid><orcidid>https://orcid.org/0000-0002-3438-2217</orcidid><orcidid>https://orcid.org/0000-0002-5028-5716</orcidid><orcidid>https://orcid.org/0000-0001-6946-1428</orcidid><orcidid>https://orcid.org/0000-0003-0886-6119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-05, Vol.18 (5), p.e0285489-e0285489
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2817448584
source Publicly Available Content (ProQuest); PubMed Central
subjects Ablation
Adolescent
Adolescents
Algorithms
Artificial neural networks
Automation
Biology and Life Sciences
Chest
Computer and Information Sciences
Datasets
Deep learning
Diagnosis
Diagnosis, Computer-Assisted - methods
Generative adversarial networks
Health aspects
Humans
Inversion
Kyphosis
Machine learning
Medicine and Health Sciences
Methods
Modelling
Multilayer perceptrons
Multilayers
Neural networks
Neural Networks, Computer
Physical Sciences
Physiological aspects
Radiographs
Radiography
Research and Analysis Methods
Scoliosis
Scoliosis - diagnostic imaging
Screening
Social Sciences
Teenagers
Young adults
Youth
title Screening of adolescent idiopathic scoliosis using generative adversarial network (GAN) inversion method in chest radiographs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20of%20adolescent%20idiopathic%20scoliosis%20using%20generative%20adversarial%20network%20(GAN)%20inversion%20method%20in%20chest%20radiographs&rft.jtitle=PloS%20one&rft.au=Lee,%20Jun%20Soo&rft.date=2023-05-22&rft.volume=18&rft.issue=5&rft.spage=e0285489&rft.epage=e0285489&rft.pages=e0285489-e0285489&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0285489&rft_dat=%3Cgale_plos_%3EA750203615%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-3ef56b0f5e6b033cb6ae74837ac652e48e434f9455ff0835b31588d4f25c68c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817448584&rft_id=info:pmid/37216382&rft_galeid=A750203615&rfr_iscdi=true