Loading…

Construction of a de novo assembly pipeline using multiple transcriptome data sets from Cypripedium macranthos (Orchidaceae)

The family Orchidaceae comprises the most species of any monocotyledonous family and has interesting characteristics such as seed germination induced by mycorrhizal fungi and flower morphology that co-adapted with pollinators. In orchid species, genomes have been decoded for only a few horticultural...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-06, Vol.18 (6), p.e0286804-e0286804
Main Authors: Kambara, Kota, Fujino, Kaien, Shimura, Hanako
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c642t-b60e076a8ffdb86054a2ecfda5cfa8e07ea34668e971d85ccd0f1515f125bce23
container_end_page e0286804
container_issue 6
container_start_page e0286804
container_title PloS one
container_volume 18
creator Kambara, Kota
Fujino, Kaien
Shimura, Hanako
description The family Orchidaceae comprises the most species of any monocotyledonous family and has interesting characteristics such as seed germination induced by mycorrhizal fungi and flower morphology that co-adapted with pollinators. In orchid species, genomes have been decoded for only a few horticultural species, and there is little genetic information available. Generally, for species lacking sequenced genomes, gene sequences are predicted by de novo assembly of transcriptome data. Here, we devised a de novo assembly pipeline for transcriptome data from the wild orchid Cypripedium (lady slipper orchid) in Japan by mixing multiple data sets and integrating assemblies to create a more complete and less redundant contig set. Among the assemblies generated by combining various assemblers, Trinity and IDBA-Tran yielded good assembly with higher mapping rates and percentages of BLAST hit contigs and complete BUSCO. Using this contig set as a reference, we analyzed differential gene expression between protocorms grown aseptically or with mycorrhizal fungi to detect gene expressions required for mycorrhizal interaction. A pipeline proposed in this study can construct a highly reliable contig set with little redundancy even when multiple transcriptome data are mixed, and can provide a reference that is adaptable to DEG analysis and other downstream analysis in RNA-seq.
doi_str_mv 10.1371/journal.pone.0286804
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2823023759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752018598</galeid><doaj_id>oai_doaj_org_article_232ab93b46cf49b1ab3b3d795073dabc</doaj_id><sourcerecordid>A752018598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-b60e076a8ffdb86054a2ecfda5cfa8e07ea34668e971d85ccd0f1515f125bce23</originalsourceid><addsrcrecordid>eNqNk0trGzEQx5fS0qRpv0FpBYWSHOzqsc9TCaaPQMDQ11XMSiNbRrvarrShhn74yrUT4pJD0UFC85v_aEYzWfaS0TkTFXu38dPYg5sPvsc55XVZ0_xRdsoawWclp-LxvfNJ9iyEDaWFqMvyaXYiKl41PM9Ps98L34c4Tipa3xNvCBCNpPc3nkAI2LVuSwY7oLM9kinYfkW6yUU7OCRxhD6o0Q7Rd0g0RCABYyBm9B1ZbIdkQW2njnSgEhrXPpDz5ajWVoNCwIvn2RMDLuCLw36Wff_44dvi8-x6-elqcXk9U2XO46wtKdKqhNoY3dYlLXLgqIyGQhmokwlB5GVZY1MxXRdKaWpYwQrDeNEq5OIse73XHZwP8lC4IHnNBeWiKppEXO0J7WEj08s7GLfSg5V_L_y4kjBGqxxKLji0jWjzUpm8aRm0ohW6agpaCQ2tSlrvD9GmtkOtsE-Fckeix5beruXK30hGeS5KIZLC-UFh9D8nDFF2Nih0Dnr00_7heVPThiX0zT_ow-kdqBWkDGxvfAqsdqLysio4ZXXR1ImaP0ClpbGzKrWZsen-yOHiyCExEX_FFUwhyKuvX_6fXf44Zt_eY9cILq6Dd9OuR8MxmO9BNfoQRjR3VWZU7qbkthpyNyXyMCXJ7dX9H7pzuh0L8QcJ-Q-c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823023759</pqid></control><display><type>article</type><title>Construction of a de novo assembly pipeline using multiple transcriptome data sets from Cypripedium macranthos (Orchidaceae)</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kambara, Kota ; Fujino, Kaien ; Shimura, Hanako</creator><contributor>Cserhati, Matthew</contributor><creatorcontrib>Kambara, Kota ; Fujino, Kaien ; Shimura, Hanako ; Cserhati, Matthew</creatorcontrib><description>The family Orchidaceae comprises the most species of any monocotyledonous family and has interesting characteristics such as seed germination induced by mycorrhizal fungi and flower morphology that co-adapted with pollinators. In orchid species, genomes have been decoded for only a few horticultural species, and there is little genetic information available. Generally, for species lacking sequenced genomes, gene sequences are predicted by de novo assembly of transcriptome data. Here, we devised a de novo assembly pipeline for transcriptome data from the wild orchid Cypripedium (lady slipper orchid) in Japan by mixing multiple data sets and integrating assemblies to create a more complete and less redundant contig set. Among the assemblies generated by combining various assemblers, Trinity and IDBA-Tran yielded good assembly with higher mapping rates and percentages of BLAST hit contigs and complete BUSCO. Using this contig set as a reference, we analyzed differential gene expression between protocorms grown aseptically or with mycorrhizal fungi to detect gene expressions required for mycorrhizal interaction. A pipeline proposed in this study can construct a highly reliable contig set with little redundancy even when multiple transcriptome data are mixed, and can provide a reference that is adaptable to DEG analysis and other downstream analysis in RNA-seq.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0286804</identifier><identifier>PMID: 37279244</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Assemblies ; Assembly ; Biology and Life Sciences ; Cypripedium ; Datasets ; Design and construction ; Fungi ; Gene expression ; Gene mapping ; Gene sequencing ; Genes ; Genomes ; Genomics ; Germination ; Orchidaceae ; Pipe lines ; Pipelines ; Pollinators ; Redundancy ; Research and Analysis Methods ; RNA ; Seed germination ; Seeds ; Symbiosis ; Transcription factors ; Transcriptomes</subject><ispartof>PloS one, 2023-06, Vol.18 (6), p.e0286804-e0286804</ispartof><rights>Copyright: © 2023 Kambara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Kambara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Kambara et al 2023 Kambara et al</rights><rights>2023 Kambara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-b60e076a8ffdb86054a2ecfda5cfa8e07ea34668e971d85ccd0f1515f125bce23</cites><orcidid>0000-0003-4466-4274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2823023759/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2823023759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37279244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cserhati, Matthew</contributor><creatorcontrib>Kambara, Kota</creatorcontrib><creatorcontrib>Fujino, Kaien</creatorcontrib><creatorcontrib>Shimura, Hanako</creatorcontrib><title>Construction of a de novo assembly pipeline using multiple transcriptome data sets from Cypripedium macranthos (Orchidaceae)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The family Orchidaceae comprises the most species of any monocotyledonous family and has interesting characteristics such as seed germination induced by mycorrhizal fungi and flower morphology that co-adapted with pollinators. In orchid species, genomes have been decoded for only a few horticultural species, and there is little genetic information available. Generally, for species lacking sequenced genomes, gene sequences are predicted by de novo assembly of transcriptome data. Here, we devised a de novo assembly pipeline for transcriptome data from the wild orchid Cypripedium (lady slipper orchid) in Japan by mixing multiple data sets and integrating assemblies to create a more complete and less redundant contig set. Among the assemblies generated by combining various assemblers, Trinity and IDBA-Tran yielded good assembly with higher mapping rates and percentages of BLAST hit contigs and complete BUSCO. Using this contig set as a reference, we analyzed differential gene expression between protocorms grown aseptically or with mycorrhizal fungi to detect gene expressions required for mycorrhizal interaction. A pipeline proposed in this study can construct a highly reliable contig set with little redundancy even when multiple transcriptome data are mixed, and can provide a reference that is adaptable to DEG analysis and other downstream analysis in RNA-seq.</description><subject>Analysis</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Biology and Life Sciences</subject><subject>Cypripedium</subject><subject>Datasets</subject><subject>Design and construction</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germination</subject><subject>Orchidaceae</subject><subject>Pipe lines</subject><subject>Pipelines</subject><subject>Pollinators</subject><subject>Redundancy</subject><subject>Research and Analysis Methods</subject><subject>RNA</subject><subject>Seed germination</subject><subject>Seeds</subject><subject>Symbiosis</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0trGzEQx5fS0qRpv0FpBYWSHOzqsc9TCaaPQMDQ11XMSiNbRrvarrShhn74yrUT4pJD0UFC85v_aEYzWfaS0TkTFXu38dPYg5sPvsc55XVZ0_xRdsoawWclp-LxvfNJ9iyEDaWFqMvyaXYiKl41PM9Ps98L34c4Tipa3xNvCBCNpPc3nkAI2LVuSwY7oLM9kinYfkW6yUU7OCRxhD6o0Q7Rd0g0RCABYyBm9B1ZbIdkQW2njnSgEhrXPpDz5ajWVoNCwIvn2RMDLuCLw36Wff_44dvi8-x6-elqcXk9U2XO46wtKdKqhNoY3dYlLXLgqIyGQhmokwlB5GVZY1MxXRdKaWpYwQrDeNEq5OIse73XHZwP8lC4IHnNBeWiKppEXO0J7WEj08s7GLfSg5V_L_y4kjBGqxxKLji0jWjzUpm8aRm0ohW6agpaCQ2tSlrvD9GmtkOtsE-Fckeix5beruXK30hGeS5KIZLC-UFh9D8nDFF2Nih0Dnr00_7heVPThiX0zT_ow-kdqBWkDGxvfAqsdqLysio4ZXXR1ImaP0ClpbGzKrWZsen-yOHiyCExEX_FFUwhyKuvX_6fXf44Zt_eY9cILq6Dd9OuR8MxmO9BNfoQRjR3VWZU7qbkthpyNyXyMCXJ7dX9H7pzuh0L8QcJ-Q-c</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>Kambara, Kota</creator><creator>Fujino, Kaien</creator><creator>Shimura, Hanako</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4466-4274</orcidid></search><sort><creationdate>20230606</creationdate><title>Construction of a de novo assembly pipeline using multiple transcriptome data sets from Cypripedium macranthos (Orchidaceae)</title><author>Kambara, Kota ; Fujino, Kaien ; Shimura, Hanako</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-b60e076a8ffdb86054a2ecfda5cfa8e07ea34668e971d85ccd0f1515f125bce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Biology and Life Sciences</topic><topic>Cypripedium</topic><topic>Datasets</topic><topic>Design and construction</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germination</topic><topic>Orchidaceae</topic><topic>Pipe lines</topic><topic>Pipelines</topic><topic>Pollinators</topic><topic>Redundancy</topic><topic>Research and Analysis Methods</topic><topic>RNA</topic><topic>Seed germination</topic><topic>Seeds</topic><topic>Symbiosis</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kambara, Kota</creatorcontrib><creatorcontrib>Fujino, Kaien</creatorcontrib><creatorcontrib>Shimura, Hanako</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kambara, Kota</au><au>Fujino, Kaien</au><au>Shimura, Hanako</au><au>Cserhati, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a de novo assembly pipeline using multiple transcriptome data sets from Cypripedium macranthos (Orchidaceae)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-06-06</date><risdate>2023</risdate><volume>18</volume><issue>6</issue><spage>e0286804</spage><epage>e0286804</epage><pages>e0286804-e0286804</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The family Orchidaceae comprises the most species of any monocotyledonous family and has interesting characteristics such as seed germination induced by mycorrhizal fungi and flower morphology that co-adapted with pollinators. In orchid species, genomes have been decoded for only a few horticultural species, and there is little genetic information available. Generally, for species lacking sequenced genomes, gene sequences are predicted by de novo assembly of transcriptome data. Here, we devised a de novo assembly pipeline for transcriptome data from the wild orchid Cypripedium (lady slipper orchid) in Japan by mixing multiple data sets and integrating assemblies to create a more complete and less redundant contig set. Among the assemblies generated by combining various assemblers, Trinity and IDBA-Tran yielded good assembly with higher mapping rates and percentages of BLAST hit contigs and complete BUSCO. Using this contig set as a reference, we analyzed differential gene expression between protocorms grown aseptically or with mycorrhizal fungi to detect gene expressions required for mycorrhizal interaction. A pipeline proposed in this study can construct a highly reliable contig set with little redundancy even when multiple transcriptome data are mixed, and can provide a reference that is adaptable to DEG analysis and other downstream analysis in RNA-seq.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37279244</pmid><doi>10.1371/journal.pone.0286804</doi><tpages>e0286804</tpages><orcidid>https://orcid.org/0000-0003-4466-4274</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-06, Vol.18 (6), p.e0286804-e0286804
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2823023759
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Analysis
Assemblies
Assembly
Biology and Life Sciences
Cypripedium
Datasets
Design and construction
Fungi
Gene expression
Gene mapping
Gene sequencing
Genes
Genomes
Genomics
Germination
Orchidaceae
Pipe lines
Pipelines
Pollinators
Redundancy
Research and Analysis Methods
RNA
Seed germination
Seeds
Symbiosis
Transcription factors
Transcriptomes
title Construction of a de novo assembly pipeline using multiple transcriptome data sets from Cypripedium macranthos (Orchidaceae)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20de%20novo%20assembly%20pipeline%20using%20multiple%20transcriptome%20data%20sets%20from%20Cypripedium%20macranthos%20(Orchidaceae)&rft.jtitle=PloS%20one&rft.au=Kambara,%20Kota&rft.date=2023-06-06&rft.volume=18&rft.issue=6&rft.spage=e0286804&rft.epage=e0286804&rft.pages=e0286804-e0286804&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0286804&rft_dat=%3Cgale_plos_%3EA752018598%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c642t-b60e076a8ffdb86054a2ecfda5cfa8e07ea34668e971d85ccd0f1515f125bce23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823023759&rft_id=info:pmid/37279244&rft_galeid=A752018598&rfr_iscdi=true