Loading…
The global convergence properties of an adaptive QP-free method without a penalty function or a filter for minimax optimization
In this paper, we proposed an adaptive QP-free method without a penalty function or a filter for minimax optimization. In each iteration, solved two linear systems of equations constructed from Lagrange multipliers and KKT-conditioned NCP functions. Based on the work set, the computational scale is...
Saved in:
Published in: | PloS one 2023-07, Vol.18 (7), p.e0274497-e0274497 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c576t-f670b4ef7fea510d9695d04553bdb1d163bfebf2c88a5e967b5b54b9ff16574e3 |
container_end_page | e0274497 |
container_issue | 7 |
container_start_page | e0274497 |
container_title | PloS one |
container_volume | 18 |
creator | Su, Ke Liu, Shaohua Lu, Wei |
description | In this paper, we proposed an adaptive QP-free method without a penalty function or a filter for minimax optimization. In each iteration, solved two linear systems of equations constructed from Lagrange multipliers and KKT-conditioned NCP functions. Based on the work set, the computational scale is further reduced. Instead of the filter structure, we adopt a nonmonotonic equilibrium mechanism with an adaptive parameter adjusted according to the result of each iteration. Feasibility of the algorithm are given, and the convergence under some assumptions is demonstrated. Numerical results and practical application are reported at the end. |
doi_str_mv | 10.1371/journal.pone.0274497 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2835427443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A756683235</galeid><sourcerecordid>A756683235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-f670b4ef7fea510d9695d04553bdb1d163bfebf2c88a5e967b5b54b9ff16574e3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEomXhHyCwhITgsEscx3ZyQlXFR6VK5aNwtZxkvOvKsYPtLC0X_joOTatd1APywV_PzLyaebPsKc5XmHD85sKN3kqzGpyFVV7wsqz5vewQ16RYsiIn93fOB9mjEC7ynJKKsYfZAeFlUXFKDrPf5xtAa-MaaVDr7Bb8GmwLaPBuAB81BOQUkhbJTg5RbwF9_rRUHgD1EDeuQz912saIJBogyYlXSI22jdpZ5Hx6VdpE8EilS6-t7uUlcilRr3_JCXqcPVDSBHgy74vs2_t358cfl6dnH06Oj06XLeUsLhXjeVOC4gokxXlXs5p2eUkpaboGd5iRRkGjiraqJIWa8YY2tGxqpTCjvASyyJ5f5x2MC2LuXRBFRWg59Y4k4u1MjE0PXQs2emnE4JNmfyWc1GL_x-qNWLutwDkhBUsSFtmrOYN3P0YIUfQ6tGCMtODGv8VYkZQznNAX_6B3S5qptTQgtFUuFW6npOKIU8YqUhCaqNUdVFod9DrNFNIIYD_g9V5AYiJcxrUcQxAnX7_8P3v2fZ99ucNuILlhE5wZpzmHfbC8BlvvQvCgbruMczGZ-6YbYjK3mM2dwp7tTug26MbN5A9Yc_cD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835427443</pqid></control><display><type>article</type><title>The global convergence properties of an adaptive QP-free method without a penalty function or a filter for minimax optimization</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Su, Ke ; Liu, Shaohua ; Lu, Wei</creator><contributor>Chen, Fei</contributor><creatorcontrib>Su, Ke ; Liu, Shaohua ; Lu, Wei ; Chen, Fei</creatorcontrib><description>In this paper, we proposed an adaptive QP-free method without a penalty function or a filter for minimax optimization. In each iteration, solved two linear systems of equations constructed from Lagrange multipliers and KKT-conditioned NCP functions. Based on the work set, the computational scale is further reduced. Instead of the filter structure, we adopt a nonmonotonic equilibrium mechanism with an adaptive parameter adjusted according to the result of each iteration. Feasibility of the algorithm are given, and the convergence under some assumptions is demonstrated. Numerical results and practical application are reported at the end.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0274497</identifier><identifier>PMID: 37428753</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Computer and Information Sciences ; Convergence ; Health aspects ; Iterative methods ; Lagrange multiplier ; Linear systems ; Mathematical optimization ; Methods ; Minimax technique ; Optimization ; Penalty function ; Physical Sciences ; Quadratic programming ; Research and Analysis Methods</subject><ispartof>PloS one, 2023-07, Vol.18 (7), p.e0274497-e0274497</ispartof><rights>Copyright: © 2023 Su et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Su et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Su et al 2023 Su et al</rights><rights>2023 Su et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c576t-f670b4ef7fea510d9695d04553bdb1d163bfebf2c88a5e967b5b54b9ff16574e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2835427443/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2835427443?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37428753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Fei</contributor><creatorcontrib>Su, Ke</creatorcontrib><creatorcontrib>Liu, Shaohua</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><title>The global convergence properties of an adaptive QP-free method without a penalty function or a filter for minimax optimization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this paper, we proposed an adaptive QP-free method without a penalty function or a filter for minimax optimization. In each iteration, solved two linear systems of equations constructed from Lagrange multipliers and KKT-conditioned NCP functions. Based on the work set, the computational scale is further reduced. Instead of the filter structure, we adopt a nonmonotonic equilibrium mechanism with an adaptive parameter adjusted according to the result of each iteration. Feasibility of the algorithm are given, and the convergence under some assumptions is demonstrated. Numerical results and practical application are reported at the end.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Computer and Information Sciences</subject><subject>Convergence</subject><subject>Health aspects</subject><subject>Iterative methods</subject><subject>Lagrange multiplier</subject><subject>Linear systems</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Minimax technique</subject><subject>Optimization</subject><subject>Penalty function</subject><subject>Physical Sciences</subject><subject>Quadratic programming</subject><subject>Research and Analysis Methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkk1v1DAQhiMEomXhHyCwhITgsEscx3ZyQlXFR6VK5aNwtZxkvOvKsYPtLC0X_joOTatd1APywV_PzLyaebPsKc5XmHD85sKN3kqzGpyFVV7wsqz5vewQ16RYsiIn93fOB9mjEC7ynJKKsYfZAeFlUXFKDrPf5xtAa-MaaVDr7Bb8GmwLaPBuAB81BOQUkhbJTg5RbwF9_rRUHgD1EDeuQz912saIJBogyYlXSI22jdpZ5Hx6VdpE8EilS6-t7uUlcilRr3_JCXqcPVDSBHgy74vs2_t358cfl6dnH06Oj06XLeUsLhXjeVOC4gokxXlXs5p2eUkpaboGd5iRRkGjiraqJIWa8YY2tGxqpTCjvASyyJ5f5x2MC2LuXRBFRWg59Y4k4u1MjE0PXQs2emnE4JNmfyWc1GL_x-qNWLutwDkhBUsSFtmrOYN3P0YIUfQ6tGCMtODGv8VYkZQznNAX_6B3S5qptTQgtFUuFW6npOKIU8YqUhCaqNUdVFod9DrNFNIIYD_g9V5AYiJcxrUcQxAnX7_8P3v2fZ99ucNuILlhE5wZpzmHfbC8BlvvQvCgbruMczGZ-6YbYjK3mM2dwp7tTug26MbN5A9Yc_cD</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Su, Ke</creator><creator>Liu, Shaohua</creator><creator>Lu, Wei</creator><general>Public Library of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230710</creationdate><title>The global convergence properties of an adaptive QP-free method without a penalty function or a filter for minimax optimization</title><author>Su, Ke ; Liu, Shaohua ; Lu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-f670b4ef7fea510d9695d04553bdb1d163bfebf2c88a5e967b5b54b9ff16574e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Computer and Information Sciences</topic><topic>Convergence</topic><topic>Health aspects</topic><topic>Iterative methods</topic><topic>Lagrange multiplier</topic><topic>Linear systems</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Minimax technique</topic><topic>Optimization</topic><topic>Penalty function</topic><topic>Physical Sciences</topic><topic>Quadratic programming</topic><topic>Research and Analysis Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Ke</creatorcontrib><creatorcontrib>Liu, Shaohua</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Ke</au><au>Liu, Shaohua</au><au>Lu, Wei</au><au>Chen, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The global convergence properties of an adaptive QP-free method without a penalty function or a filter for minimax optimization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2023-07-10</date><risdate>2023</risdate><volume>18</volume><issue>7</issue><spage>e0274497</spage><epage>e0274497</epage><pages>e0274497-e0274497</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper, we proposed an adaptive QP-free method without a penalty function or a filter for minimax optimization. In each iteration, solved two linear systems of equations constructed from Lagrange multipliers and KKT-conditioned NCP functions. Based on the work set, the computational scale is further reduced. Instead of the filter structure, we adopt a nonmonotonic equilibrium mechanism with an adaptive parameter adjusted according to the result of each iteration. Feasibility of the algorithm are given, and the convergence under some assumptions is demonstrated. Numerical results and practical application are reported at the end.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>37428753</pmid><doi>10.1371/journal.pone.0274497</doi><tpages>e0274497</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2023-07, Vol.18 (7), p.e0274497-e0274497 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2835427443 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access) |
subjects | Algorithms Analysis Computer and Information Sciences Convergence Health aspects Iterative methods Lagrange multiplier Linear systems Mathematical optimization Methods Minimax technique Optimization Penalty function Physical Sciences Quadratic programming Research and Analysis Methods |
title | The global convergence properties of an adaptive QP-free method without a penalty function or a filter for minimax optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20global%20convergence%20properties%20of%20an%20adaptive%20QP-free%20method%20without%20a%20penalty%20function%20or%20a%20filter%20for%20minimax%20optimization&rft.jtitle=PloS%20one&rft.au=Su,%20Ke&rft.date=2023-07-10&rft.volume=18&rft.issue=7&rft.spage=e0274497&rft.epage=e0274497&rft.pages=e0274497-e0274497&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0274497&rft_dat=%3Cgale_plos_%3EA756683235%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c576t-f670b4ef7fea510d9695d04553bdb1d163bfebf2c88a5e967b5b54b9ff16574e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2835427443&rft_id=info:pmid/37428753&rft_galeid=A756683235&rfr_iscdi=true |