Loading…
Quantifying inter-annual variability on the space-use of parental Northern Gannets (Morus bassanus) in pursuit of different prey types
Spatial planning for marine areas of multi-species conservation concern requires in-depth assessment of the distribution of predators and their prey. Northern Gannets Morus bassanus are generalist predators that predate several different forage fishes depending on their availability. In the western...
Saved in:
Published in: | PloS one 2023-07, Vol.18 (7), p.e0288650-e0288650 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spatial planning for marine areas of multi-species conservation concern requires in-depth assessment of the distribution of predators and their prey. Northern Gannets Morus bassanus are generalist predators that predate several different forage fishes depending on their availability. In the western North Atlantic, gannets employ different dive tactics while in pursuit of different prey types, performing deep, prolonged U-shaped dives when foraging on capelin (Mallotus villosus), and rapid, shallow, V-shaped dives when foraging on larger pelagic fishes. Therefore, much can be inferred about the distribution and abundance of key forage fishes by assessing the foraging behaviour and space-use of gannets. In this study, we aimed to quantify space-use and to determine areas of suitable foraging habitat for gannets in pursuit of different prey types using habitat suitability models and kernel density utilization distributions. We deployed 25 GPS/Time-depth recorder devices on parental Northern Gannets at Cape St. Mary's, Newfoundland, Canada from 2019 to 2021. To assess the influence of environmental variables on gannets foraging for different prey types, we constructed three different habitat suitability models: a U-shaped dive model, and two V-shaped dive models (early and late chick-rearing). Suitable foraging habitat for capelin, deduced by the U-shaped dive model, was defined by coastal, shallow waters with flat relief and sea surface temperatures (SST) of 11-15° C. Suitable habitat for early V-shaped dives was defined by shallow and coastal waters with steep slope and SST of 12-15°C and ~18°C, likely reflecting the variability in environmental preferences of different prey species captured when performing V-shaped dives. Suitable habitat for late V-shaped dives was defined by shallow coastal waters ( |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0288650 |