Loading…
Detection of SARS-CoV-2 RNA in wastewater from an enclosed college campus serves as an early warning surveillance system
SARS-CoV-2, the causative agent of Covid-19, is shed from infected persons in respiratory droplets, feces, and urine. Using quantitative PCR (qPCR), our group hypothesized that we could detect SARS-CoV-2 in wastewater samples collected on a university campus prior to the detection of the virus in in...
Saved in:
Published in: | PloS one 2023-07, Vol.18 (7), p.e0288808 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | SARS-CoV-2, the causative agent of Covid-19, is shed from infected persons in respiratory droplets, feces, and urine. Using quantitative PCR (qPCR), our group hypothesized that we could detect SARS-CoV-2 in wastewater samples collected on a university campus prior to the detection of the virus in individuals on campus. Wastewater samples were collected 3 times a week from 5 locations on the main campus of the University of North Carolina Wilmington (UNCW) from July 24, 2020 to December 21, 2020. Post-collection, total RNA was extracted and SARS-CoV-2 RNA in the samples was detected by qPCR. SARS-CoV-2 signal was detected on campus beginning on August 19 as classes began and the signal increased in both intensity and breadth as the Fall semester progressed. A comparison of two RNA extraction methods from wastewater showed that SARS-CoV-2 was detected more frequently on filter samples versus the direct extracts. Aligning our wastewater data with the reported SARS-CoV-2 cases on the campus Covid-19 dashboard showed the virus signal was routinely detected in the wastewater prior to clusters of individual cases being reported. These data support the testing of wastewater for the presence of SARS-CoV-2 and may be used as part of a surveillance program for detecting the virus in a community prior to an outbreak occurring and could ultimately be incorporated with other SARS-CoV-2 metrics to better inform public health enabling a quick response to contain or mitigating spread of the virus. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0288808 |